![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul31 | GIF version |
Description: Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul31 | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcom 7940 | . . . 4 โข ((๐ต โ โ โง ๐ถ โ โ) โ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต)) | |
2 | 1 | oveq2d 5891 | . . 3 โข ((๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ด ยท (๐ถ ยท ๐ต))) |
3 | 2 | 3adant1 1015 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ด ยท (๐ถ ยท ๐ต))) |
4 | mulass 7942 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) | |
5 | mulcl 7938 | . . . . 5 โข ((๐ถ โ โ โง ๐ต โ โ) โ (๐ถ ยท ๐ต) โ โ) | |
6 | 5 | ancoms 268 | . . . 4 โข ((๐ต โ โ โง ๐ถ โ โ) โ (๐ถ ยท ๐ต) โ โ) |
7 | 6 | 3adant1 1015 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ถ ยท ๐ต) โ โ) |
8 | simp1 997 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ๐ด โ โ) | |
9 | 7, 8 | mulcomd 7979 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ถ ยท ๐ต) ยท ๐ด) = (๐ด ยท (๐ถ ยท ๐ต))) |
10 | 3, 4, 9 | 3eqtr4d 2220 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โง w3a 978 = wceq 1353 โ wcel 2148 (class class class)co 5875 โcc 7809 ยท cmul 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-mulcl 7909 ax-mulcom 7912 ax-mulass 7914 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-iota 5179 df-fv 5225 df-ov 5878 |
This theorem is referenced by: mul31d 8111 |
Copyright terms: Public domain | W3C validator |