ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul31d Unicode version

Theorem mul31d 7634
Description: Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
addcomd.2  |-  ( ph  ->  B  e.  CC )
mul12d.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
mul31d  |-  ( ph  ->  ( ( A  x.  B )  x.  C
)  =  ( ( C  x.  B )  x.  A ) )

Proof of Theorem mul31d
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcomd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 mul12d.3 . 2  |-  ( ph  ->  C  e.  CC )
4 mul31 7611 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( C  x.  B )  x.  A ) )
51, 2, 3, 4syl3anc 1174 1  |-  ( ph  ->  ( ( A  x.  B )  x.  C
)  =  ( ( C  x.  B )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7346    x. cmul 7353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-mulcl 7441  ax-mulcom 7444  ax-mulass 7446
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3003  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-iota 4980  df-fv 5023  df-ov 5655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator