![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul32i | GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
mul.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mul32i | ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mul32 8101 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | mp3an 1347 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 (class class class)co 5888 ℂcc 7823 · cmul 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-mulcom 7926 ax-mulass 7928 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 |
This theorem is referenced by: 8th4div3 9152 |
Copyright terms: Public domain | W3C validator |