ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul4i Unicode version

Theorem mul4i 8134
Description: Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
mul.3  |-  C  e.  CC
mul4.4  |-  D  e.  CC
Assertion
Ref Expression
mul4i  |-  ( ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D )
)

Proof of Theorem mul4i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 mul.3 . 2  |-  C  e.  CC
4 mul4.4 . 2  |-  D  e.  CC
5 mul4 8118 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
61, 2, 3, 4, 5mp4an 427 1  |-  ( ( A  x.  B )  x.  ( C  x.  D ) )  =  ( ( A  x.  C )  x.  ( B  x.  D )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160  (class class class)co 5895   CCcc 7838    x. cmul 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-mulcl 7938  ax-mulcom 7941  ax-mulass 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator