Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffr | GIF version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4292 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2299 | . . . 4 ⊢ Ⅎ𝑥𝑠 | |
5 | 2, 3, 4 | nffrfor 4308 | . . 3 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑠 |
6 | 5 | nfal 1556 | . 2 ⊢ Ⅎ𝑥∀𝑠 FrFor 𝑅𝐴𝑠 |
7 | 1, 6 | nfxfr 1454 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1333 Ⅎwnf 1440 Ⅎwnfc 2286 FrFor wfrfor 4287 Fr wfr 4288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-frfor 4291 df-frind 4292 |
This theorem is referenced by: nfwe 4315 |
Copyright terms: Public domain | W3C validator |