| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffr | GIF version | ||
| Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffr.r | ⊢ Ⅎ𝑥𝑅 |
| nffr.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frind 4377 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
| 2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2347 | . . . 4 ⊢ Ⅎ𝑥𝑠 | |
| 5 | 2, 3, 4 | nffrfor 4393 | . . 3 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑠 |
| 6 | 5 | nfal 1598 | . 2 ⊢ Ⅎ𝑥∀𝑠 FrFor 𝑅𝐴𝑠 |
| 7 | 1, 6 | nfxfr 1496 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1370 Ⅎwnf 1482 Ⅎwnfc 2334 FrFor wfrfor 4372 Fr wfr 4373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-frfor 4376 df-frind 4377 |
| This theorem is referenced by: nfwe 4400 |
| Copyright terms: Public domain | W3C validator |