Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffr | GIF version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4310 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝑠 | |
5 | 2, 3, 4 | nffrfor 4326 | . . 3 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑠 |
6 | 5 | nfal 1564 | . 2 ⊢ Ⅎ𝑥∀𝑠 FrFor 𝑅𝐴𝑠 |
7 | 1, 6 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1341 Ⅎwnf 1448 Ⅎwnfc 2295 FrFor wfrfor 4305 Fr wfr 4306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-frfor 4309 df-frind 4310 |
This theorem is referenced by: nfwe 4333 |
Copyright terms: Public domain | W3C validator |