ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr GIF version

Theorem nffr 4334
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-frind 4317 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
4 nfcv 2312 . . . 4 𝑥𝑠
52, 3, 4nffrfor 4333 . . 3 𝑥 FrFor 𝑅𝐴𝑠
65nfal 1569 . 2 𝑥𝑠 FrFor 𝑅𝐴𝑠
71, 6nfxfr 1467 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wal 1346  wnf 1453  wnfc 2299   FrFor wfrfor 4312   Fr wfr 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-frfor 4316  df-frind 4317
This theorem is referenced by:  nfwe  4340
  Copyright terms: Public domain W3C validator