ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr GIF version

Theorem nffr 4439
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-frind 4422 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
4 nfcv 2372 . . . 4 𝑥𝑠
52, 3, 4nffrfor 4438 . . 3 𝑥 FrFor 𝑅𝐴𝑠
65nfal 1622 . 2 𝑥𝑠 FrFor 𝑅𝐴𝑠
71, 6nfxfr 1520 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wal 1393  wnf 1506  wnfc 2359   FrFor wfrfor 4417   Fr wfr 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-frfor 4421  df-frind 4422
This theorem is referenced by:  nfwe  4445
  Copyright terms: Public domain W3C validator