ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffr GIF version

Theorem nffr 4309
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r 𝑥𝑅
nffr.a 𝑥𝐴
Assertion
Ref Expression
nffr 𝑥 𝑅 Fr 𝐴

Proof of Theorem nffr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-frind 4292 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
2 nffr.r . . . 4 𝑥𝑅
3 nffr.a . . . 4 𝑥𝐴
4 nfcv 2299 . . . 4 𝑥𝑠
52, 3, 4nffrfor 4308 . . 3 𝑥 FrFor 𝑅𝐴𝑠
65nfal 1556 . 2 𝑥𝑠 FrFor 𝑅𝐴𝑠
71, 6nfxfr 1454 1 𝑥 𝑅 Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wal 1333  wnf 1440  wnfc 2286   FrFor wfrfor 4287   Fr wfr 4288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-frfor 4291  df-frind 4292
This theorem is referenced by:  nfwe  4315
  Copyright terms: Public domain W3C validator