| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffr | GIF version | ||
| Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffr.r | ⊢ Ⅎ𝑥𝑅 |
| nffr.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frind 4422 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
| 2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝑠 | |
| 5 | 2, 3, 4 | nffrfor 4438 | . . 3 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑠 |
| 6 | 5 | nfal 1622 | . 2 ⊢ Ⅎ𝑥∀𝑠 FrFor 𝑅𝐴𝑠 |
| 7 | 1, 6 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1393 Ⅎwnf 1506 Ⅎwnfc 2359 FrFor wfrfor 4417 Fr wfr 4418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-frfor 4421 df-frind 4422 |
| This theorem is referenced by: nfwe 4445 |
| Copyright terms: Public domain | W3C validator |