Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffr | GIF version |
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r | ⊢ Ⅎ𝑥𝑅 |
nffr.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffr | ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4317 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
2 | nffr.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
3 | nffr.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥𝑠 | |
5 | 2, 3, 4 | nffrfor 4333 | . . 3 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑠 |
6 | 5 | nfal 1569 | . 2 ⊢ Ⅎ𝑥∀𝑠 FrFor 𝑅𝐴𝑠 |
7 | 1, 6 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1346 Ⅎwnf 1453 Ⅎwnfc 2299 FrFor wfrfor 4312 Fr wfr 4313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-frfor 4316 df-frind 4317 |
This theorem is referenced by: nfwe 4340 |
Copyright terms: Public domain | W3C validator |