![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0rei | GIF version |
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0rei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 8675 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0re.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | sselii 3022 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ℝcr 7347 ℕ0cn0 8671 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7434 ax-resscn 7435 ax-1re 7437 ax-addrcl 7440 ax-rnegex 7452 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-int 3689 df-inn 8421 df-n0 8672 |
This theorem is referenced by: nn0cni 8683 nn0le2xi 8721 nn0lele2xi 8722 numlt 8899 numltc 8900 decle 8908 decleh 8909 |
Copyright terms: Public domain | W3C validator |