ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0rei GIF version

Theorem nn0rei 9084
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
Hypothesis
Ref Expression
nn0re.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
nn0rei 𝐴 ∈ ℝ

Proof of Theorem nn0rei
StepHypRef Expression
1 nn0ssre 9077 . 2 0 ⊆ ℝ
2 nn0re.1 . 2 𝐴 ∈ ℕ0
31, 2sselii 3125 1 𝐴 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2128  cr 7714  0cn0 9073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-sep 4082  ax-cnex 7806  ax-resscn 7807  ax-1re 7809  ax-addrcl 7812  ax-rnegex 7824
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-int 3808  df-inn 8817  df-n0 9074
This theorem is referenced by:  nn0cni  9085  nn0le2xi  9123  nn0lele2xi  9124  numlt  9302  numltc  9303  decle  9311  decleh  9312
  Copyright terms: Public domain W3C validator