ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0rei GIF version

Theorem nn0rei 9306
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
Hypothesis
Ref Expression
nn0re.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
nn0rei 𝐴 ∈ ℝ

Proof of Theorem nn0rei
StepHypRef Expression
1 nn0ssre 9299 . 2 0 ⊆ ℝ
2 nn0re.1 . 2 𝐴 ∈ ℕ0
31, 2sselii 3190 1 𝐴 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2176  cr 7924  0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-int 3886  df-inn 9037  df-n0 9296
This theorem is referenced by:  nn0cni  9307  nn0le2xi  9345  nn0lele2xi  9346  numlt  9528  numltc  9529  decle  9537  decleh  9538  modsubi  12742
  Copyright terms: Public domain W3C validator