ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decle Unicode version

Theorem decle 9490
Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decle.1  |-  A  e. 
NN0
decle.2  |-  B  e. 
NN0
decle.3  |-  C  e. 
NN0
decle.4  |-  B  <_  C
Assertion
Ref Expression
decle  |- ; A B  <_ ; A C

Proof of Theorem decle
StepHypRef Expression
1 decle.4 . . 3  |-  B  <_  C
2 decle.2 . . . . 5  |-  B  e. 
NN0
32nn0rei 9260 . . . 4  |-  B  e.  RR
4 decle.3 . . . . 5  |-  C  e. 
NN0
54nn0rei 9260 . . . 4  |-  C  e.  RR
6 10nn0 9474 . . . . . 6  |- ; 1 0  e.  NN0
7 decle.1 . . . . . 6  |-  A  e. 
NN0
86, 7nn0mulcli 9287 . . . . 5  |-  (; 1 0  x.  A
)  e.  NN0
98nn0rei 9260 . . . 4  |-  (; 1 0  x.  A
)  e.  RR
103, 5, 9leadd2i 8531 . . 3  |-  ( B  <_  C  <->  ( (; 1 0  x.  A )  +  B )  <_  (
(; 1 0  x.  A
)  +  C ) )
111, 10mpbi 145 . 2  |-  ( (; 1
0  x.  A )  +  B )  <_ 
( (; 1 0  x.  A
)  +  C )
12 dfdec10 9460 . 2  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
13 dfdec10 9460 . 2  |- ; A C  =  ( (; 1 0  x.  A
)  +  C )
1411, 12, 133brtr4i 4063 1  |- ; A B  <_ ; A C
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    <_ cle 8062   NN0cn0 9249  ;cdc 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-dec 9458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator