ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lele2xi Unicode version

Theorem nn0lele2xi 9051
Description: 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0lele2x.1  |-  M  e. 
NN0
nn0lele2x.2  |-  N  e. 
NN0
Assertion
Ref Expression
nn0lele2xi  |-  ( N  <_  M  ->  N  <_  ( 2  x.  M
) )

Proof of Theorem nn0lele2xi
StepHypRef Expression
1 nn0lele2x.1 . . 3  |-  M  e. 
NN0
21nn0le2xi 9050 . 2  |-  M  <_ 
( 2  x.  M
)
3 nn0lele2x.2 . . . 4  |-  N  e. 
NN0
43nn0rei 9011 . . 3  |-  N  e.  RR
51nn0rei 9011 . . 3  |-  M  e.  RR
6 2re 8813 . . . 4  |-  2  e.  RR
76, 5remulcli 7803 . . 3  |-  ( 2  x.  M )  e.  RR
84, 5, 7letri 7894 . 2  |-  ( ( N  <_  M  /\  M  <_  ( 2  x.  M ) )  ->  N  <_  ( 2  x.  M ) )
92, 8mpan2 422 1  |-  ( N  <_  M  ->  N  <_  ( 2  x.  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1481   class class class wbr 3936  (class class class)co 5781    x. cmul 7648    <_ cle 7824   2c2 8794   NN0cn0 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-xp 4552  df-cnv 4554  df-iota 5095  df-fv 5138  df-ov 5784  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-inn 8744  df-2 8802  df-n0 9001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator