| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 |
|
| Ref | Expression |
|---|---|
| nn0cni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 |
. . 3
| |
| 2 | 1 | nn0rei 9306 |
. 2
|
| 3 | 2 | recni 8084 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-int 3886 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: nn0le2xi 9345 num0u 9514 num0h 9515 numsuc 9517 numsucc 9543 numma 9547 nummac 9548 numma2c 9549 numadd 9550 numaddc 9551 nummul1c 9552 nummul2c 9553 decrmanc 9560 decrmac 9561 decaddi 9563 decaddci 9564 decsubi 9566 decmul1 9567 decmulnc 9570 11multnc 9571 decmul10add 9572 6p5lem 9573 4t3lem 9600 7t3e21 9613 7t6e42 9616 8t3e24 9619 8t4e32 9620 8t8e64 9624 9t3e27 9626 9t4e36 9627 9t5e45 9628 9t6e54 9629 9t7e63 9630 9t11e99 9633 decbin0 9643 decbin2 9644 sq10 10857 3dec 10859 3dvdsdec 12176 3dvds2dec 12177 3lcm2e6 12482 dec5dvds 12735 dec5dvds2 12736 dec2nprm 12738 modxai 12739 mod2xi 12740 modsubi 12742 gcdi 12743 numexp0 12745 numexp1 12746 numexpp1 12747 numexp2x 12748 decsplit0b 12749 decsplit0 12750 decsplit1 12751 decsplit 12752 karatsuba 12753 2exp8 12758 |
| Copyright terms: Public domain | W3C validator |