![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nn0cni |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nn0rei 8892 |
. 2
![]() ![]() ![]() ![]() |
3 | 2 | recni 7702 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-cnex 7636 ax-resscn 7637 ax-1re 7639 ax-addrcl 7642 ax-rnegex 7654 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-sn 3499 df-int 3738 df-inn 8631 df-n0 8882 |
This theorem is referenced by: nn0le2xi 8931 num0u 9096 num0h 9097 numsuc 9099 numsucc 9125 numma 9129 nummac 9130 numma2c 9131 numadd 9132 numaddc 9133 nummul1c 9134 nummul2c 9135 decrmanc 9142 decrmac 9143 decaddi 9145 decaddci 9146 decsubi 9148 decmul1 9149 decmulnc 9152 11multnc 9153 decmul10add 9154 6p5lem 9155 4t3lem 9182 7t3e21 9195 7t6e42 9198 8t3e24 9201 8t4e32 9202 8t8e64 9206 9t3e27 9208 9t4e36 9209 9t5e45 9210 9t6e54 9211 9t7e63 9212 9t11e99 9215 decbin0 9225 decbin2 9226 sq10 10352 3dec 10354 3dvdsdec 11410 3dvds2dec 11411 3lcm2e6 11684 |
Copyright terms: Public domain | W3C validator |