| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 |
|
| Ref | Expression |
|---|---|
| nn0cni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 |
. . 3
| |
| 2 | 1 | nn0rei 9380 |
. 2
|
| 3 | 2 | recni 8158 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-int 3924 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: nn0le2xi 9419 num0u 9588 num0h 9589 numsuc 9591 numsucc 9617 numma 9621 nummac 9622 numma2c 9623 numadd 9624 numaddc 9625 nummul1c 9626 nummul2c 9627 decrmanc 9634 decrmac 9635 decaddi 9637 decaddci 9638 decsubi 9640 decmul1 9641 decmulnc 9644 11multnc 9645 decmul10add 9646 6p5lem 9647 4t3lem 9674 7t3e21 9687 7t6e42 9690 8t3e24 9693 8t4e32 9694 8t8e64 9698 9t3e27 9700 9t4e36 9701 9t5e45 9702 9t6e54 9703 9t7e63 9704 9t11e99 9707 decbin0 9717 decbin2 9718 sq10 10934 3dec 10936 cats1fvn 11296 3dvdsdec 12376 3dvds2dec 12377 3lcm2e6 12682 dec5dvds 12935 dec5dvds2 12936 dec2nprm 12938 modxai 12939 mod2xi 12940 modsubi 12942 gcdi 12943 numexp0 12945 numexp1 12946 numexpp1 12947 numexp2x 12948 decsplit0b 12949 decsplit0 12950 decsplit1 12951 decsplit 12952 karatsuba 12953 2exp8 12958 |
| Copyright terms: Public domain | W3C validator |