| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 |
|
| Ref | Expression |
|---|---|
| nn0cni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 |
. . 3
| |
| 2 | 1 | nn0rei 9277 |
. 2
|
| 3 | 2 | recni 8055 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: nn0le2xi 9316 num0u 9484 num0h 9485 numsuc 9487 numsucc 9513 numma 9517 nummac 9518 numma2c 9519 numadd 9520 numaddc 9521 nummul1c 9522 nummul2c 9523 decrmanc 9530 decrmac 9531 decaddi 9533 decaddci 9534 decsubi 9536 decmul1 9537 decmulnc 9540 11multnc 9541 decmul10add 9542 6p5lem 9543 4t3lem 9570 7t3e21 9583 7t6e42 9586 8t3e24 9589 8t4e32 9590 8t8e64 9594 9t3e27 9596 9t4e36 9597 9t5e45 9598 9t6e54 9599 9t7e63 9600 9t11e99 9603 decbin0 9613 decbin2 9614 sq10 10821 3dec 10823 3dvdsdec 12047 3dvds2dec 12048 3lcm2e6 12353 dec5dvds 12606 dec5dvds2 12607 dec2nprm 12609 modxai 12610 mod2xi 12611 modsubi 12613 gcdi 12614 numexp0 12616 numexp1 12617 numexpp1 12618 numexp2x 12619 decsplit0b 12620 decsplit0 12621 decsplit1 12622 decsplit 12623 karatsuba 12624 2exp8 12629 |
| Copyright terms: Public domain | W3C validator |