Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 |
Ref | Expression |
---|---|
nn0cni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 | . . 3 | |
2 | 1 | nn0rei 9107 | . 2 |
3 | 2 | recni 7893 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cc 7733 cn0 9096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4085 ax-cnex 7826 ax-resscn 7827 ax-1re 7829 ax-addrcl 7832 ax-rnegex 7844 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3567 df-int 3810 df-inn 8840 df-n0 9097 |
This theorem is referenced by: nn0le2xi 9146 num0u 9311 num0h 9312 numsuc 9314 numsucc 9340 numma 9344 nummac 9345 numma2c 9346 numadd 9347 numaddc 9348 nummul1c 9349 nummul2c 9350 decrmanc 9357 decrmac 9358 decaddi 9360 decaddci 9361 decsubi 9363 decmul1 9364 decmulnc 9367 11multnc 9368 decmul10add 9369 6p5lem 9370 4t3lem 9397 7t3e21 9410 7t6e42 9413 8t3e24 9416 8t4e32 9417 8t8e64 9421 9t3e27 9423 9t4e36 9424 9t5e45 9425 9t6e54 9426 9t7e63 9427 9t11e99 9430 decbin0 9440 decbin2 9441 sq10 10598 3dec 10600 3dvdsdec 11769 3dvds2dec 11770 3lcm2e6 12051 |
Copyright terms: Public domain | W3C validator |