![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0re.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nn0cni |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nn0rei 9251 |
. 2
![]() ![]() ![]() ![]() |
3 | 2 | recni 8031 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-int 3871 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0le2xi 9290 num0u 9458 num0h 9459 numsuc 9461 numsucc 9487 numma 9491 nummac 9492 numma2c 9493 numadd 9494 numaddc 9495 nummul1c 9496 nummul2c 9497 decrmanc 9504 decrmac 9505 decaddi 9507 decaddci 9508 decsubi 9510 decmul1 9511 decmulnc 9514 11multnc 9515 decmul10add 9516 6p5lem 9517 4t3lem 9544 7t3e21 9557 7t6e42 9560 8t3e24 9563 8t4e32 9564 8t8e64 9568 9t3e27 9570 9t4e36 9571 9t5e45 9572 9t6e54 9573 9t7e63 9574 9t11e99 9577 decbin0 9587 decbin2 9588 sq10 10783 3dec 10785 3dvdsdec 12006 3dvds2dec 12007 3lcm2e6 12298 |
Copyright terms: Public domain | W3C validator |