| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 |
|
| Ref | Expression |
|---|---|
| nn0cni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 |
. . 3
| |
| 2 | 1 | nn0rei 9308 |
. 2
|
| 3 | 2 | recni 8086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-int 3886 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: nn0le2xi 9347 num0u 9516 num0h 9517 numsuc 9519 numsucc 9545 numma 9549 nummac 9550 numma2c 9551 numadd 9552 numaddc 9553 nummul1c 9554 nummul2c 9555 decrmanc 9562 decrmac 9563 decaddi 9565 decaddci 9566 decsubi 9568 decmul1 9569 decmulnc 9572 11multnc 9573 decmul10add 9574 6p5lem 9575 4t3lem 9602 7t3e21 9615 7t6e42 9618 8t3e24 9621 8t4e32 9622 8t8e64 9626 9t3e27 9628 9t4e36 9629 9t5e45 9630 9t6e54 9631 9t7e63 9632 9t11e99 9635 decbin0 9645 decbin2 9646 sq10 10859 3dec 10861 3dvdsdec 12209 3dvds2dec 12210 3lcm2e6 12515 dec5dvds 12768 dec5dvds2 12769 dec2nprm 12771 modxai 12772 mod2xi 12773 modsubi 12775 gcdi 12776 numexp0 12778 numexp1 12779 numexpp1 12780 numexp2x 12781 decsplit0b 12782 decsplit0 12783 decsplit1 12784 decsplit 12785 karatsuba 12786 2exp8 12791 |
| Copyright terms: Public domain | W3C validator |