| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cni | Unicode version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
| Ref | Expression |
|---|---|
| nn0re.1 |
|
| Ref | Expression |
|---|---|
| nn0cni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re.1 |
. . 3
| |
| 2 | 1 | nn0rei 9341 |
. 2
|
| 3 | 2 | recni 8119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-int 3900 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: nn0le2xi 9380 num0u 9549 num0h 9550 numsuc 9552 numsucc 9578 numma 9582 nummac 9583 numma2c 9584 numadd 9585 numaddc 9586 nummul1c 9587 nummul2c 9588 decrmanc 9595 decrmac 9596 decaddi 9598 decaddci 9599 decsubi 9601 decmul1 9602 decmulnc 9605 11multnc 9606 decmul10add 9607 6p5lem 9608 4t3lem 9635 7t3e21 9648 7t6e42 9651 8t3e24 9654 8t4e32 9655 8t8e64 9659 9t3e27 9661 9t4e36 9662 9t5e45 9663 9t6e54 9664 9t7e63 9665 9t11e99 9668 decbin0 9678 decbin2 9679 sq10 10894 3dec 10896 3dvdsdec 12291 3dvds2dec 12292 3lcm2e6 12597 dec5dvds 12850 dec5dvds2 12851 dec2nprm 12853 modxai 12854 mod2xi 12855 modsubi 12857 gcdi 12858 numexp0 12860 numexp1 12861 numexpp1 12862 numexp2x 12863 decsplit0b 12864 decsplit0 12865 decsplit1 12866 decsplit 12867 karatsuba 12868 2exp8 12873 |
| Copyright terms: Public domain | W3C validator |