ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numlt Unicode version

Theorem numlt 9381
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1  |-  T  e.  NN
numlt.2  |-  A  e. 
NN0
numlt.3  |-  B  e. 
NN0
numlt.4  |-  C  e.  NN
numlt.5  |-  B  < 
C
Assertion
Ref Expression
numlt  |-  ( ( T  x.  A )  +  B )  < 
( ( T  x.  A )  +  C
)

Proof of Theorem numlt
StepHypRef Expression
1 numlt.5 . 2  |-  B  < 
C
2 numlt.3 . . . 4  |-  B  e. 
NN0
32nn0rei 9160 . . 3  |-  B  e.  RR
4 numlt.4 . . . 4  |-  C  e.  NN
54nnrei 8901 . . 3  |-  C  e.  RR
6 numlt.1 . . . . . 6  |-  T  e.  NN
76nnnn0i 9157 . . . . 5  |-  T  e. 
NN0
8 numlt.2 . . . . 5  |-  A  e. 
NN0
97, 8nn0mulcli 9187 . . . 4  |-  ( T  x.  A )  e. 
NN0
109nn0rei 9160 . . 3  |-  ( T  x.  A )  e.  RR
113, 5, 10ltadd2i 8351 . 2  |-  ( B  <  C  <->  ( ( T  x.  A )  +  B )  <  (
( T  x.  A
)  +  C ) )
121, 11mpbi 145 1  |-  ( ( T  x.  A )  +  B )  < 
( ( T  x.  A )  +  C
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   class class class wbr 3998  (class class class)co 5865    + caddc 7789    x. cmul 7791    < clt 7966   NNcn 8892   NN0cn0 9149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-sub 8104  df-inn 8893  df-n0 9150
This theorem is referenced by:  numltc  9382  declt  9384
  Copyright terms: Public domain W3C validator