ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numlt Unicode version

Theorem numlt 9438
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1  |-  T  e.  NN
numlt.2  |-  A  e. 
NN0
numlt.3  |-  B  e. 
NN0
numlt.4  |-  C  e.  NN
numlt.5  |-  B  < 
C
Assertion
Ref Expression
numlt  |-  ( ( T  x.  A )  +  B )  < 
( ( T  x.  A )  +  C
)

Proof of Theorem numlt
StepHypRef Expression
1 numlt.5 . 2  |-  B  < 
C
2 numlt.3 . . . 4  |-  B  e. 
NN0
32nn0rei 9217 . . 3  |-  B  e.  RR
4 numlt.4 . . . 4  |-  C  e.  NN
54nnrei 8958 . . 3  |-  C  e.  RR
6 numlt.1 . . . . . 6  |-  T  e.  NN
76nnnn0i 9214 . . . . 5  |-  T  e. 
NN0
8 numlt.2 . . . . 5  |-  A  e. 
NN0
97, 8nn0mulcli 9244 . . . 4  |-  ( T  x.  A )  e. 
NN0
109nn0rei 9217 . . 3  |-  ( T  x.  A )  e.  RR
113, 5, 10ltadd2i 8407 . 2  |-  ( B  <  C  <->  ( ( T  x.  A )  +  B )  <  (
( T  x.  A
)  +  C ) )
121, 11mpbi 145 1  |-  ( ( T  x.  A )  +  B )  < 
( ( T  x.  A )  +  C
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   class class class wbr 4018  (class class class)co 5896    + caddc 7844    x. cmul 7846    < clt 8022   NNcn 8949   NN0cn0 9206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-sub 8160  df-inn 8950  df-n0 9207
This theorem is referenced by:  numltc  9439  declt  9441
  Copyright terms: Public domain W3C validator