Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Unicode version

Theorem nncni 8530
 Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1
Assertion
Ref Expression
nncni

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3
21nnrei 8529 . 2
32recni 7597 1
 Colors of variables: wff set class Syntax hints:   wcel 1445  cc 7445  cn 8520 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-cnex 7533  ax-resscn 7534  ax-1re 7536  ax-addrcl 7539 This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-v 2635  df-in 3019  df-ss 3026  df-int 3711  df-inn 8521 This theorem is referenced by:  9p1e10  8978  numnncl2  8998  dec10p  9018  3dec  10254  4bc2eq6  10313  ef01bndlem  11212
 Copyright terms: Public domain W3C validator