| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nncni | Unicode version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 |
|
| Ref | Expression |
|---|---|
| nncni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 |
. . 3
| |
| 2 | 1 | nnrei 9045 |
. 2
|
| 3 | 2 | recni 8084 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-inn 9037 |
| This theorem is referenced by: 9p1e10 9506 numnncl2 9526 dec10p 9546 3dec 10859 4bc2eq6 10919 ef01bndlem 12067 3dvds 12175 pockthi 12681 dec5nprm 12737 dec2nprm 12738 modxai 12739 modxp1i 12741 modsubi 12742 |
| Copyright terms: Public domain | W3C validator |