| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nncni | Unicode version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| nnre.1 | 
 | 
| Ref | Expression | 
|---|---|
| nncni | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnre.1 | 
. . 3
 | |
| 2 | 1 | nnrei 8999 | 
. 2
 | 
| 3 | 2 | recni 8038 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-inn 8991 | 
| This theorem is referenced by: 9p1e10 9459 numnncl2 9479 dec10p 9499 3dec 10806 4bc2eq6 10866 ef01bndlem 11921 3dvds 12029 pockthi 12527 dec5nprm 12583 dec2nprm 12584 modxai 12585 modxp1i 12587 modsubi 12588 | 
| Copyright terms: Public domain | W3C validator |