ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Unicode version

Theorem nncni 8888
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nncni  |-  A  e.  CC

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3  |-  A  e.  NN
21nnrei 8887 . 2  |-  A  e.  RR
32recni 7932 1  |-  A  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   CCcc 7772   NNcn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-int 3832  df-inn 8879
This theorem is referenced by:  9p1e10  9345  numnncl2  9365  dec10p  9385  3dec  10648  4bc2eq6  10708  ef01bndlem  11719  pockthi  12310
  Copyright terms: Public domain W3C validator