ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Unicode version

Theorem nncni 9081
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nncni  |-  A  e.  CC

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3  |-  A  e.  NN
21nnrei 9080 . 2  |-  A  e.  RR
32recni 8119 1  |-  A  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   CCcc 7958   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-int 3900  df-inn 9072
This theorem is referenced by:  9p1e10  9541  numnncl2  9561  dec10p  9581  3dec  10896  4bc2eq6  10956  ef01bndlem  12182  3dvds  12290  pockthi  12796  dec5nprm  12852  dec2nprm  12853  modxai  12854  modxp1i  12856  modsubi  12857
  Copyright terms: Public domain W3C validator