| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nncni | Unicode version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 |
|
| Ref | Expression |
|---|---|
| nncni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 |
. . 3
| |
| 2 | 1 | nnrei 9080 |
. 2
|
| 3 | 2 | recni 8119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-int 3900 df-inn 9072 |
| This theorem is referenced by: 9p1e10 9541 numnncl2 9561 dec10p 9581 3dec 10896 4bc2eq6 10956 ef01bndlem 12182 3dvds 12290 pockthi 12796 dec5nprm 12852 dec2nprm 12853 modxai 12854 modxp1i 12856 modsubi 12857 |
| Copyright terms: Public domain | W3C validator |