![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nncni | Unicode version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nncni |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nnrei 8958 |
. 2
![]() ![]() ![]() ![]() |
3 | 2 | recni 7999 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-addrcl 7938 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-v 2754 df-in 3150 df-ss 3157 df-int 3860 df-inn 8950 |
This theorem is referenced by: 9p1e10 9416 numnncl2 9436 dec10p 9456 3dec 10726 4bc2eq6 10786 ef01bndlem 11796 pockthi 12390 |
Copyright terms: Public domain | W3C validator |