ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Unicode version

Theorem nncni 9045
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nncni  |-  A  e.  CC

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3  |-  A  e.  NN
21nnrei 9044 . 2  |-  A  e.  RR
32recni 8083 1  |-  A  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2175   CCcc 7922   NNcn 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-int 3885  df-inn 9036
This theorem is referenced by:  9p1e10  9505  numnncl2  9525  dec10p  9545  3dec  10857  4bc2eq6  10917  ef01bndlem  12009  3dvds  12117  pockthi  12623  dec5nprm  12679  dec2nprm  12680  modxai  12681  modxp1i  12683  modsubi  12684
  Copyright terms: Public domain W3C validator