| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nncni | Unicode version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 |
|
| Ref | Expression |
|---|---|
| nncni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 |
. . 3
| |
| 2 | 1 | nnrei 9115 |
. 2
|
| 3 | 2 | recni 8154 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3923 df-inn 9107 |
| This theorem is referenced by: 9p1e10 9576 numnncl2 9596 dec10p 9616 3dec 10931 4bc2eq6 10991 ef01bndlem 12262 3dvds 12370 pockthi 12876 dec5nprm 12932 dec2nprm 12933 modxai 12934 modxp1i 12936 modsubi 12937 |
| Copyright terms: Public domain | W3C validator |