| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrei | Unicode version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 |
|
| Ref | Expression |
|---|---|
| nnrei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 |
. 2
| |
| 2 | nnre 9117 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 df-inn 9111 |
| This theorem is referenced by: nncni 9120 nnap0i 9141 nnne0i 9142 10re 9596 numlt 9602 numltc 9603 ef01bndlem 12267 pockthi 12881 strleun 13137 strle1g 13139 2strbasg 13153 2stropg 13154 tsetndxnbasendx 13224 plendxnbasendx 13238 dsndxnbasendx 13253 unifndxnbasendx 13263 slotsdifunifndx 13265 basendxnedgfndx 15812 struct2slots2dom 15839 |
| Copyright terms: Public domain | W3C validator |