ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei Unicode version

Theorem nnrei 9047
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nnrei  |-  A  e.  RR

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2  |-  A  e.  NN
2 nnre 9045 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
31, 2ax-mp 5 1  |-  A  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   RRcr 7926   NNcn 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-int 3886  df-inn 9039
This theorem is referenced by:  nncni  9048  nnap0i  9069  nnne0i  9070  10re  9524  numlt  9530  numltc  9531  ef01bndlem  12100  pockthi  12714  strleun  12969  strle1g  12971  2strbasg  12985  2stropg  12986  tsetndxnbasendx  13056  plendxnbasendx  13070  dsndxnbasendx  13085  unifndxnbasendx  13095  slotsdifunifndx  13097  basendxnedgfndx  15643  struct2slots2dom  15668
  Copyright terms: Public domain W3C validator