ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei Unicode version

Theorem nnrei 8946
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nnrei  |-  A  e.  RR

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2  |-  A  e.  NN
2 nnre 8944 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
31, 2ax-mp 5 1  |-  A  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   RRcr 7828   NNcn 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-in 3150  df-ss 3157  df-int 3860  df-inn 8938
This theorem is referenced by:  nncni  8947  nnap0i  8968  nnne0i  8969  10re  9420  numlt  9426  numltc  9427  ef01bndlem  11782  pockthi  12374  strleun  12582  strle1g  12584  2strbasg  12597  2stropg  12598  tsetndxnbasendx  12668  plendxnbasendx  12682  dsndxnbasendx  12693  unifndxnbasendx  12703  slotsdifunifndx  12705
  Copyright terms: Public domain W3C validator