Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnrei | Unicode version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 |
Ref | Expression |
---|---|
nnrei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 | |
2 | nnre 8872 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cr 7760 cn 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3830 df-inn 8866 |
This theorem is referenced by: nncni 8875 nnap0i 8896 nnne0i 8897 10re 9348 numlt 9354 numltc 9355 ef01bndlem 11706 pockthi 12297 strleun 12494 strle1g 12495 2strbasg 12506 2stropg 12507 |
Copyright terms: Public domain | W3C validator |