| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnrei | Unicode version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| nnre.1 | 
 | 
| Ref | Expression | 
|---|---|
| nnrei | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnre.1 | 
. 2
 | |
| 2 | nnre 8997 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-inn 8991 | 
| This theorem is referenced by: nncni 9000 nnap0i 9021 nnne0i 9022 10re 9475 numlt 9481 numltc 9482 ef01bndlem 11921 pockthi 12527 strleun 12782 strle1g 12784 2strbasg 12797 2stropg 12798 tsetndxnbasendx 12868 plendxnbasendx 12882 dsndxnbasendx 12893 unifndxnbasendx 12903 slotsdifunifndx 12905 | 
| Copyright terms: Public domain | W3C validator |