ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei Unicode version

Theorem nnrei 9080
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nnrei  |-  A  e.  RR

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2  |-  A  e.  NN
2 nnre 9078 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
31, 2ax-mp 5 1  |-  A  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   RRcr 7959   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-int 3900  df-inn 9072
This theorem is referenced by:  nncni  9081  nnap0i  9102  nnne0i  9103  10re  9557  numlt  9563  numltc  9564  ef01bndlem  12182  pockthi  12796  strleun  13051  strle1g  13053  2strbasg  13067  2stropg  13068  tsetndxnbasendx  13138  plendxnbasendx  13152  dsndxnbasendx  13167  unifndxnbasendx  13177  slotsdifunifndx  13179  basendxnedgfndx  15725  struct2slots2dom  15752
  Copyright terms: Public domain W3C validator