ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni GIF version

Theorem nncni 9017
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nncni 𝐴 ∈ ℂ

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3 𝐴 ∈ ℕ
21nnrei 9016 . 2 𝐴 ∈ ℝ
32recni 8055 1 𝐴 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cc 7894  cn 9007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-int 3876  df-inn 9008
This theorem is referenced by:  9p1e10  9476  numnncl2  9496  dec10p  9516  3dec  10823  4bc2eq6  10883  ef01bndlem  11938  3dvds  12046  pockthi  12552  dec5nprm  12608  dec2nprm  12609  modxai  12610  modxp1i  12612  modsubi  12613
  Copyright terms: Public domain W3C validator