ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni GIF version

Theorem nncni 9088
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nncni 𝐴 ∈ ℂ

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3 𝐴 ∈ ℕ
21nnrei 9087 . 2 𝐴 ∈ ℝ
32recni 8126 1 𝐴 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2180  cc 7965  cn 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-sep 4181  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-in 3183  df-ss 3190  df-int 3903  df-inn 9079
This theorem is referenced by:  9p1e10  9548  numnncl2  9568  dec10p  9588  3dec  10903  4bc2eq6  10963  ef01bndlem  12233  3dvds  12341  pockthi  12847  dec5nprm  12903  dec2nprm  12904  modxai  12905  modxp1i  12907  modsubi  12908
  Copyright terms: Public domain W3C validator