| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nncni | GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
| 2 | 1 | nnrei 9087 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8126 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ℂcc 7965 ℕcn 9078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-in 3183 df-ss 3190 df-int 3903 df-inn 9079 |
| This theorem is referenced by: 9p1e10 9548 numnncl2 9568 dec10p 9588 3dec 10903 4bc2eq6 10963 ef01bndlem 12233 3dvds 12341 pockthi 12847 dec5nprm 12903 dec2nprm 12904 modxai 12905 modxp1i 12907 modsubi 12908 |
| Copyright terms: Public domain | W3C validator |