| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nncni | GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
| 2 | 1 | nnrei 9016 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8055 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7894 ℕcn 9007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-inn 9008 |
| This theorem is referenced by: 9p1e10 9476 numnncl2 9496 dec10p 9516 3dec 10823 4bc2eq6 10883 ef01bndlem 11938 3dvds 12046 pockthi 12552 dec5nprm 12608 dec2nprm 12609 modxai 12610 modxp1i 12612 modsubi 12613 |
| Copyright terms: Public domain | W3C validator |