| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nncni | GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
| 2 | 1 | nnrei 9052 | . 2 ⊢ 𝐴 ∈ ℝ |
| 3 | 2 | recni 8091 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℂcc 7930 ℕcn 9043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4166 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3173 df-ss 3180 df-int 3888 df-inn 9044 |
| This theorem is referenced by: 9p1e10 9513 numnncl2 9533 dec10p 9553 3dec 10866 4bc2eq6 10926 ef01bndlem 12111 3dvds 12219 pockthi 12725 dec5nprm 12781 dec2nprm 12782 modxai 12783 modxp1i 12785 modsubi 12786 |
| Copyright terms: Public domain | W3C validator |