![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nncni | GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
2 | 1 | nnrei 8945 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 7986 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2159 ℂcc 7826 ℕcn 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 ax-sep 4135 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-v 2753 df-in 3149 df-ss 3156 df-int 3859 df-inn 8937 |
This theorem is referenced by: 9p1e10 9403 numnncl2 9423 dec10p 9443 3dec 10711 4bc2eq6 10771 ef01bndlem 11781 pockthi 12373 |
Copyright terms: Public domain | W3C validator |