ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni GIF version

Theorem nncni 9053
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nncni 𝐴 ∈ ℂ

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3 𝐴 ∈ ℕ
21nnrei 9052 . 2 𝐴 ∈ ℝ
32recni 8091 1 𝐴 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2177  cc 7930  cn 9043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3173  df-ss 3180  df-int 3888  df-inn 9044
This theorem is referenced by:  9p1e10  9513  numnncl2  9533  dec10p  9553  3dec  10866  4bc2eq6  10926  ef01bndlem  12111  3dvds  12219  pockthi  12725  dec5nprm  12781  dec2nprm  12782  modxai  12783  modxp1i  12785  modsubi  12786
  Copyright terms: Public domain W3C validator