![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dec10p | Unicode version |
Description: Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
dec10p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 8943 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 10nn 8955 |
. . . . 5
![]() ![]() ![]() ![]() ![]() | |
3 | 2 | nncni 8495 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
4 | 3 | mulid1i 7553 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | oveq1i 5678 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | eqtr2i 2110 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-mulcom 7509 ax-addass 7510 ax-mulass 7511 ax-distr 7512 ax-1rid 7515 ax-0id 7516 ax-cnre 7519 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-br 3854 df-iota 4995 df-fv 5038 df-ov 5671 df-inn 8486 df-2 8544 df-3 8545 df-4 8546 df-5 8547 df-6 8548 df-7 8549 df-8 8550 df-9 8551 df-dec 8941 |
This theorem is referenced by: 5t3e15 9040 |
Copyright terms: Public domain | W3C validator |