ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoni Unicode version

Theorem nnoni 4583
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Hypothesis
Ref Expression
nnoni.1  |-  A  e. 
om
Assertion
Ref Expression
nnoni  |-  A  e.  On

Proof of Theorem nnoni
StepHypRef Expression
1 nnoni.1 . 2  |-  A  e. 
om
2 nnon 4582 . 2  |-  ( A  e.  om  ->  A  e.  On )
31, 2ax-mp 5 1  |-  A  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2135   Oncon0 4336   omcom 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-iinf 4560
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-uni 3785  df-int 3820  df-tr 4076  df-iord 4339  df-on 4341  df-suc 4344  df-iom 4563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator