ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnoni GIF version

Theorem nnoni 4587
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Hypothesis
Ref Expression
nnoni.1 𝐴 ∈ ω
Assertion
Ref Expression
nnoni 𝐴 ∈ On

Proof of Theorem nnoni
StepHypRef Expression
1 nnoni.1 . 2 𝐴 ∈ ω
2 nnon 4586 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2ax-mp 5 1 𝐴 ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 2136  Oncon0 4340  ωcom 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-iinf 4564
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-uni 3789  df-int 3824  df-tr 4080  df-iord 4343  df-on 4345  df-suc 4348  df-iom 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator