| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnord | Unicode version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4702 |
. 2
| |
| 2 | eloni 4466 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: nnsucsssuc 6638 nnsucuniel 6641 nntri1 6642 nnsseleq 6647 nntr2 6649 phplem1 7013 phplem2 7014 phplem3 7015 phplem4 7016 phplem4dom 7023 nndomo 7025 1ndom2 7026 dif1en 7041 nnwetri 7078 unsnfi 7081 ctmlemr 7275 nnnninf 7293 nnnninfeq 7295 nnnninfeq2 7296 nninfisol 7300 piord 7498 addnidpig 7523 archnqq 7604 frecfzennn 10648 hashp1i 11032 ennnfonelemk 12971 ennnfonelemg 12974 ennnfonelemhf1o 12984 ennnfonelemhom 12986 ctinfom 12999 nnsf 16371 peano4nninf 16372 nninfsellemeq 16380 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |