Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnord | Unicode version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4592 | . 2 | |
2 | eloni 4358 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 word 4345 con0 4346 com 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-tr 4086 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 |
This theorem is referenced by: nnsucsssuc 6468 nnsucuniel 6471 nntri1 6472 nnsseleq 6477 nntr2 6479 phplem1 6826 phplem2 6827 phplem3 6828 phplem4 6829 phplem4dom 6836 nndomo 6838 dif1en 6853 nnwetri 6889 unsnfi 6892 ctmlemr 7081 nnnninf 7098 nnnninfeq 7100 nnnninfeq2 7101 nninfisol 7105 piord 7260 addnidpig 7285 archnqq 7366 frecfzennn 10369 hashp1i 10732 ennnfonelemk 12342 ennnfonelemg 12345 ennnfonelemhf1o 12355 ennnfonelemhom 12357 ctinfom 12370 nnsf 13998 peano4nninf 13999 nninfsellemeq 14007 |
Copyright terms: Public domain | W3C validator |