| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnord | Unicode version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| nnord | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnon 4646 | 
. 2
 | |
| 2 | eloni 4410 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: nnsucsssuc 6550 nnsucuniel 6553 nntri1 6554 nnsseleq 6559 nntr2 6561 phplem1 6913 phplem2 6914 phplem3 6915 phplem4 6916 phplem4dom 6923 nndomo 6925 dif1en 6940 nnwetri 6977 unsnfi 6980 ctmlemr 7174 nnnninf 7192 nnnninfeq 7194 nnnninfeq2 7195 nninfisol 7199 piord 7378 addnidpig 7403 archnqq 7484 frecfzennn 10518 hashp1i 10902 ennnfonelemk 12617 ennnfonelemg 12620 ennnfonelemhf1o 12630 ennnfonelemhom 12632 ctinfom 12645 nnsf 15649 peano4nninf 15650 nninfsellemeq 15658 | 
| Copyright terms: Public domain | W3C validator |