ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri51 Unicode version

Theorem onntri51 7158
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri51  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Distinct variable group:    x, y

Proof of Theorem onntri51
StepHypRef Expression
1 exmidontriim 7143 . . 3  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
21con3i 622 . 2  |-  ( -. 
A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -. EXMID )
32con3i 622 1  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ w3o 962   A.wral 2435  EXMIDwem 4154   Oncon0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-uni 3773  df-tr 4063  df-exmid 4155  df-iord 4325  df-on 4327
This theorem is referenced by:  onntri3or  7163
  Copyright terms: Public domain W3C validator