ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri51 Unicode version

Theorem onntri51 7425
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri51  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Distinct variable group:    x, y

Proof of Theorem onntri51
StepHypRef Expression
1 exmidontriim 7407 . . 3  |-  (EXMID  ->  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
21con3i 635 . 2  |-  ( -. 
A. x  e.  On  A. y  e.  On  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -. EXMID )
32con3i 635 1  |-  ( -. 
-. EXMID 
->  -.  -.  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ w3o 1001   A.wral 2508  EXMIDwem 4278   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-uni 3889  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459
This theorem is referenced by:  onntri3or  7430
  Copyright terms: Public domain W3C validator