ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onntri51 GIF version

Theorem onntri51 7371
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.)
Assertion
Ref Expression
onntri51 (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem onntri51
StepHypRef Expression
1 exmidontriim 7353 . . 3 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
21con3i 633 . 2 (¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ EXMID)
32con3i 633 1 (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3o 980  wral 2485  EXMIDwem 4246  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-uni 3857  df-tr 4151  df-exmid 4247  df-iord 4421  df-on 4423
This theorem is referenced by:  onntri3or  7376
  Copyright terms: Public domain W3C validator