ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem1 Unicode version

Theorem onsucelsucexmidlem1 4505
Description: Lemma for onsucelsucexmid 4507. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem1  |-  (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
Distinct variable group:    ph, x

Proof of Theorem onsucelsucexmidlem1
StepHypRef Expression
1 0ex 4109 . . 3  |-  (/)  e.  _V
21prid1 3682 . 2  |-  (/)  e.  { (/)
,  { (/) } }
3 eqid 2165 . . 3  |-  (/)  =  (/)
43orci 721 . 2  |-  ( (/)  =  (/)  \/  ph )
5 eqeq1 2172 . . . 4  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
65orbi1d 781 . . 3  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  ph ) 
<->  ( (/)  =  (/)  \/  ph ) ) )
76elrab 2882 . 2  |-  ( (/)  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  <-> 
( (/)  e.  { (/) ,  { (/) } }  /\  ( (/)  =  (/)  \/  ph ) ) )
82, 4, 7mpbir2an 932 1  |-  (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 698    = wceq 1343    e. wcel 2136   {crab 2448   (/)c0 3409   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-pr 3583
This theorem is referenced by:  onsucelsucexmidlem  4506  onsucelsucexmid  4507  acexmidlem2  5839
  Copyright terms: Public domain W3C validator