ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem1 GIF version

Theorem onsucelsucexmidlem1 4594
Description: Lemma for onsucelsucexmid 4596. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem1
StepHypRef Expression
1 0ex 4187 . . 3 ∅ ∈ V
21prid1 3749 . 2 ∅ ∈ {∅, {∅}}
3 eqid 2207 . . 3 ∅ = ∅
43orci 733 . 2 (∅ = ∅ ∨ 𝜑)
5 eqeq1 2214 . . . 4 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
65orbi1d 793 . . 3 (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑)))
76elrab 2936 . 2 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑)))
82, 4, 7mpbir2an 945 1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wo 710   = wceq 1373  wcel 2178  {crab 2490  c0 3468  {csn 3643  {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-nul 4186
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-pr 3650
This theorem is referenced by:  onsucelsucexmidlem  4595  onsucelsucexmid  4596  acexmidlem2  5964
  Copyright terms: Public domain W3C validator