![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem1 | GIF version |
Description: Lemma for onsucelsucexmid 4529. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmidlem1 | ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4130 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | prid1 3698 | . 2 ⊢ ∅ ∈ {∅, {∅}} |
3 | eqid 2177 | . . 3 ⊢ ∅ = ∅ | |
4 | 3 | orci 731 | . 2 ⊢ (∅ = ∅ ∨ 𝜑) |
5 | eqeq1 2184 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
6 | 5 | orbi1d 791 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑))) |
7 | 6 | elrab 2893 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑))) |
8 | 2, 4, 7 | mpbir2an 942 | 1 ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 708 = wceq 1353 ∈ wcel 2148 {crab 2459 ∅c0 3422 {csn 3592 {cpr 3593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4129 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2739 df-dif 3131 df-un 3133 df-nul 3423 df-sn 3598 df-pr 3599 |
This theorem is referenced by: onsucelsucexmidlem 4528 onsucelsucexmid 4529 acexmidlem2 5871 |
Copyright terms: Public domain | W3C validator |