| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem1 | GIF version | ||
| Description: Lemma for onsucelsucexmid 4596. (Contributed by Jim Kingdon, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| onsucelsucexmidlem1 | ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4187 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | prid1 3749 | . 2 ⊢ ∅ ∈ {∅, {∅}} |
| 3 | eqid 2207 | . . 3 ⊢ ∅ = ∅ | |
| 4 | 3 | orci 733 | . 2 ⊢ (∅ = ∅ ∨ 𝜑) |
| 5 | eqeq1 2214 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
| 6 | 5 | orbi1d 793 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑))) |
| 7 | 6 | elrab 2936 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑))) |
| 8 | 2, 4, 7 | mpbir2an 945 | 1 ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ∈ wcel 2178 {crab 2490 ∅c0 3468 {csn 3643 {cpr 3644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-nul 4186 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: onsucelsucexmidlem 4595 onsucelsucexmid 4596 acexmidlem2 5964 |
| Copyright terms: Public domain | W3C validator |