ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem1 GIF version

Theorem onsucelsucexmidlem1 4576
Description: Lemma for onsucelsucexmid 4578. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem1
StepHypRef Expression
1 0ex 4171 . . 3 ∅ ∈ V
21prid1 3739 . 2 ∅ ∈ {∅, {∅}}
3 eqid 2205 . . 3 ∅ = ∅
43orci 733 . 2 (∅ = ∅ ∨ 𝜑)
5 eqeq1 2212 . . . 4 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
65orbi1d 793 . . 3 (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑)))
76elrab 2929 . 2 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑)))
82, 4, 7mpbir2an 945 1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wo 710   = wceq 1373  wcel 2176  {crab 2488  c0 3460  {csn 3633  {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-pr 3640
This theorem is referenced by:  onsucelsucexmidlem  4577  onsucelsucexmid  4578  acexmidlem2  5941
  Copyright terms: Public domain W3C validator