ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem1 GIF version

Theorem onsucelsucexmidlem1 4542
Description: Lemma for onsucelsucexmid 4544. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem1
StepHypRef Expression
1 0ex 4145 . . 3 ∅ ∈ V
21prid1 3713 . 2 ∅ ∈ {∅, {∅}}
3 eqid 2189 . . 3 ∅ = ∅
43orci 732 . 2 (∅ = ∅ ∨ 𝜑)
5 eqeq1 2196 . . . 4 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
65orbi1d 792 . . 3 (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑)))
76elrab 2908 . 2 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑)))
82, 4, 7mpbir2an 944 1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1364  wcel 2160  {crab 2472  c0 3437  {csn 3607  {cpr 3608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-nul 4144
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-nul 3438  df-sn 3613  df-pr 3614
This theorem is referenced by:  onsucelsucexmidlem  4543  onsucelsucexmid  4544  acexmidlem2  5889
  Copyright terms: Public domain W3C validator