![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem1 | GIF version |
Description: Lemma for onsucelsucexmid 4541. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmidlem1 | ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4142 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | prid1 3710 | . 2 ⊢ ∅ ∈ {∅, {∅}} |
3 | eqid 2187 | . . 3 ⊢ ∅ = ∅ | |
4 | 3 | orci 732 | . 2 ⊢ (∅ = ∅ ∨ 𝜑) |
5 | eqeq1 2194 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
6 | 5 | orbi1d 792 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑))) |
7 | 6 | elrab 2905 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑))) |
8 | 2, 4, 7 | mpbir2an 943 | 1 ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1363 ∈ wcel 2158 {crab 2469 ∅c0 3434 {csn 3604 {cpr 3605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-nul 4141 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-nul 3435 df-sn 3610 df-pr 3611 |
This theorem is referenced by: onsucelsucexmidlem 4540 onsucelsucexmid 4541 acexmidlem2 5885 |
Copyright terms: Public domain | W3C validator |