ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem1 GIF version

Theorem onsucelsucexmidlem1 4539
Description: Lemma for onsucelsucexmid 4541. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem1
StepHypRef Expression
1 0ex 4142 . . 3 ∅ ∈ V
21prid1 3710 . 2 ∅ ∈ {∅, {∅}}
3 eqid 2187 . . 3 ∅ = ∅
43orci 732 . 2 (∅ = ∅ ∨ 𝜑)
5 eqeq1 2194 . . . 4 (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅))
65orbi1d 792 . . 3 (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑)))
76elrab 2905 . 2 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑)))
82, 4, 7mpbir2an 943 1 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1363  wcel 2158  {crab 2469  c0 3434  {csn 3604  {cpr 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-nul 4141
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-nul 3435  df-sn 3610  df-pr 3611
This theorem is referenced by:  onsucelsucexmidlem  4540  onsucelsucexmid  4541  acexmidlem2  5885
  Copyright terms: Public domain W3C validator