![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem1 | GIF version |
Description: Lemma for onsucelsucexmid 4544. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmidlem1 | ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4145 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | prid1 3713 | . 2 ⊢ ∅ ∈ {∅, {∅}} |
3 | eqid 2189 | . . 3 ⊢ ∅ = ∅ | |
4 | 3 | orci 732 | . 2 ⊢ (∅ = ∅ ∨ 𝜑) |
5 | eqeq1 2196 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
6 | 5 | orbi1d 792 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑))) |
7 | 6 | elrab 2908 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑))) |
8 | 2, 4, 7 | mpbir2an 944 | 1 ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2160 {crab 2472 ∅c0 3437 {csn 3607 {cpr 3608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-nul 4144 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-nul 3438 df-sn 3613 df-pr 3614 |
This theorem is referenced by: onsucelsucexmidlem 4543 onsucelsucexmid 4544 acexmidlem2 5889 |
Copyright terms: Public domain | W3C validator |