Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem1 | GIF version |
Description: Lemma for onsucelsucexmid 4507. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmidlem1 | ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | prid1 3682 | . 2 ⊢ ∅ ∈ {∅, {∅}} |
3 | eqid 2165 | . . 3 ⊢ ∅ = ∅ | |
4 | 3 | orci 721 | . 2 ⊢ (∅ = ∅ ∨ 𝜑) |
5 | eqeq1 2172 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ = ∅)) | |
6 | 5 | orbi1d 781 | . . 3 ⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨ 𝜑))) |
7 | 6 | elrab 2882 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ ∈ {∅, {∅}} ∧ (∅ = ∅ ∨ 𝜑))) |
8 | 2, 4, 7 | mpbir2an 932 | 1 ⊢ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1343 ∈ wcel 2136 {crab 2448 ∅c0 3409 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 |
This theorem is referenced by: onsucelsucexmidlem 4506 onsucelsucexmid 4507 acexmidlem2 5839 |
Copyright terms: Public domain | W3C validator |