ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeluu Unicode version

Theorem opeluu 4481
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1  |-  A  e. 
_V
opeluu.2  |-  B  e. 
_V
Assertion
Ref Expression
opeluu  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4  |-  A  e. 
_V
21prid1 3724 . . 3  |-  A  e. 
{ A ,  B }
3 opeluu.2 . . . . 5  |-  B  e. 
_V
41, 3opi2 4262 . . . 4  |-  { A ,  B }  e.  <. A ,  B >.
5 elunii 3840 . . . 4  |-  ( ( { A ,  B }  e.  <. A ,  B >.  /\  <. A ,  B >.  e.  C )  ->  { A ,  B }  e.  U. C
)
64, 5mpan 424 . . 3  |-  ( <. A ,  B >.  e.  C  ->  { A ,  B }  e.  U. C )
7 elunii 3840 . . 3  |-  ( ( A  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  A  e.  U. U. C
)
82, 6, 7sylancr 414 . 2  |-  ( <. A ,  B >.  e.  C  ->  A  e.  U.
U. C )
93prid2 3725 . . 3  |-  B  e. 
{ A ,  B }
10 elunii 3840 . . 3  |-  ( ( B  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  B  e.  U. U. C
)
119, 6, 10sylancr 414 . 2  |-  ( <. A ,  B >.  e.  C  ->  B  e.  U.
U. C )
128, 11jca 306 1  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760   {cpr 3619   <.cop 3621   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836
This theorem is referenced by:  asymref  5051  wrdexb  10926
  Copyright terms: Public domain W3C validator