| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeluu | Unicode version | ||
| Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| opeluu.1 |
|
| opeluu.2 |
|
| Ref | Expression |
|---|---|
| opeluu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeluu.1 |
. . . 4
| |
| 2 | 1 | prid1 3728 |
. . 3
|
| 3 | opeluu.2 |
. . . . 5
| |
| 4 | 1, 3 | opi2 4266 |
. . . 4
|
| 5 | elunii 3844 |
. . . 4
| |
| 6 | 4, 5 | mpan 424 |
. . 3
|
| 7 | elunii 3844 |
. . 3
| |
| 8 | 2, 6, 7 | sylancr 414 |
. 2
|
| 9 | 3 | prid2 3729 |
. . 3
|
| 10 | elunii 3844 |
. . 3
| |
| 11 | 9, 6, 10 | sylancr 414 |
. 2
|
| 12 | 8, 11 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 |
| This theorem is referenced by: asymref 5055 wrdexb 10947 |
| Copyright terms: Public domain | W3C validator |