ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeluu Unicode version

Theorem opeluu 4515
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1  |-  A  e. 
_V
opeluu.2  |-  B  e. 
_V
Assertion
Ref Expression
opeluu  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4  |-  A  e. 
_V
21prid1 3749 . . 3  |-  A  e. 
{ A ,  B }
3 opeluu.2 . . . . 5  |-  B  e. 
_V
41, 3opi2 4295 . . . 4  |-  { A ,  B }  e.  <. A ,  B >.
5 elunii 3869 . . . 4  |-  ( ( { A ,  B }  e.  <. A ,  B >.  /\  <. A ,  B >.  e.  C )  ->  { A ,  B }  e.  U. C
)
64, 5mpan 424 . . 3  |-  ( <. A ,  B >.  e.  C  ->  { A ,  B }  e.  U. C )
7 elunii 3869 . . 3  |-  ( ( A  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  A  e.  U. U. C
)
82, 6, 7sylancr 414 . 2  |-  ( <. A ,  B >.  e.  C  ->  A  e.  U.
U. C )
93prid2 3750 . . 3  |-  B  e. 
{ A ,  B }
10 elunii 3869 . . 3  |-  ( ( B  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  B  e.  U. U. C
)
119, 6, 10sylancr 414 . 2  |-  ( <. A ,  B >.  e.  C  ->  B  e.  U.
U. C )
128, 11jca 306 1  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   _Vcvv 2776   {cpr 3644   <.cop 3646   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865
This theorem is referenced by:  asymref  5087  wrdexb  11043
  Copyright terms: Public domain W3C validator