Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeluu | Unicode version |
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
opeluu.1 | |
opeluu.2 |
Ref | Expression |
---|---|
opeluu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeluu.1 | . . . 4 | |
2 | 1 | prid1 3682 | . . 3 |
3 | opeluu.2 | . . . . 5 | |
4 | 1, 3 | opi2 4211 | . . . 4 |
5 | elunii 3794 | . . . 4 | |
6 | 4, 5 | mpan 421 | . . 3 |
7 | elunii 3794 | . . 3 | |
8 | 2, 6, 7 | sylancr 411 | . 2 |
9 | 3 | prid2 3683 | . . 3 |
10 | elunii 3794 | . . 3 | |
11 | 9, 6, 10 | sylancr 411 | . 2 |
12 | 8, 11 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cvv 2726 cpr 3577 cop 3579 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 |
This theorem is referenced by: asymref 4989 |
Copyright terms: Public domain | W3C validator |