ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 Unicode version

Theorem opi2 4267
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi2  |-  { A ,  B }  e.  <. A ,  B >.

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4  |-  A  e. 
_V
2 opi1.2 . . . 4  |-  B  e. 
_V
3 prexg 4245 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
41, 2, 3mp2an 426 . . 3  |-  { A ,  B }  e.  _V
54prid2 3730 . 2  |-  { A ,  B }  e.  { { A } ,  { A ,  B } }
61, 2dfop 3808 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
75, 6eleqtrri 2272 1  |-  { A ,  B }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   {csn 3623   {cpr 3624   <.cop 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632
This theorem is referenced by:  uniopel  4290  opeluu  4486  elvvuni  4728
  Copyright terms: Public domain W3C validator