ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 Unicode version

Theorem opi2 4278
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi2  |-  { A ,  B }  e.  <. A ,  B >.

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4  |-  A  e. 
_V
2 opi1.2 . . . 4  |-  B  e. 
_V
3 prexg 4256 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
41, 2, 3mp2an 426 . . 3  |-  { A ,  B }  e.  _V
54prid2 3740 . 2  |-  { A ,  B }  e.  { { A } ,  { A ,  B } }
61, 2dfop 3818 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
75, 6eleqtrri 2281 1  |-  { A ,  B }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772   {csn 3633   {cpr 3634   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  uniopel  4302  opeluu  4498  elvvuni  4740
  Copyright terms: Public domain W3C validator