ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 Unicode version

Theorem opi2 4211
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi2  |-  { A ,  B }  e.  <. A ,  B >.

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4  |-  A  e. 
_V
2 opi1.2 . . . 4  |-  B  e. 
_V
3 prexg 4189 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
41, 2, 3mp2an 423 . . 3  |-  { A ,  B }  e.  _V
54prid2 3683 . 2  |-  { A ,  B }  e.  { { A } ,  { A ,  B } }
61, 2dfop 3757 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
75, 6eleqtrri 2242 1  |-  { A ,  B }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726   {csn 3576   {cpr 3577   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  uniopel  4234  opeluu  4428  elvvuni  4668
  Copyright terms: Public domain W3C validator