ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 Unicode version

Theorem opi2 4218
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi2  |-  { A ,  B }  e.  <. A ,  B >.

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4  |-  A  e. 
_V
2 opi1.2 . . . 4  |-  B  e. 
_V
3 prexg 4196 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
41, 2, 3mp2an 424 . . 3  |-  { A ,  B }  e.  _V
54prid2 3690 . 2  |-  { A ,  B }  e.  { { A } ,  { A ,  B } }
61, 2dfop 3764 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
75, 6eleqtrri 2246 1  |-  { A ,  B }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730   {csn 3583   {cpr 3584   <.cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  uniopel  4241  opeluu  4435  elvvuni  4675
  Copyright terms: Public domain W3C validator