| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeluu | GIF version | ||
| Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| opeluu.1 | ⊢ 𝐴 ∈ V |
| opeluu.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeluu | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeluu.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 3739 | . . 3 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | opeluu.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 1, 3 | opi2 4277 | . . . 4 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| 5 | elunii 3855 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → {𝐴, 𝐵} ∈ ∪ 𝐶) | |
| 6 | 4, 5 | mpan 424 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → {𝐴, 𝐵} ∈ ∪ 𝐶) |
| 7 | elunii 3855 | . . 3 ⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐴 ∈ ∪ ∪ 𝐶) | |
| 8 | 2, 6, 7 | sylancr 414 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ ∪ ∪ 𝐶) |
| 9 | 3 | prid2 3740 | . . 3 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| 10 | elunii 3855 | . . 3 ⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐵 ∈ ∪ ∪ 𝐶) | |
| 11 | 9, 6, 10 | sylancr 414 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ∪ ∪ 𝐶) |
| 12 | 8, 11 | jca 306 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 Vcvv 2772 {cpr 3634 〈cop 3636 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 |
| This theorem is referenced by: asymref 5068 wrdexb 11006 |
| Copyright terms: Public domain | W3C validator |