ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeluu GIF version

Theorem opeluu 4428
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1 𝐴 ∈ V
opeluu.2 𝐵 ∈ V
Assertion
Ref Expression
opeluu (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4 𝐴 ∈ V
21prid1 3682 . . 3 𝐴 ∈ {𝐴, 𝐵}
3 opeluu.2 . . . . 5 𝐵 ∈ V
41, 3opi2 4211 . . . 4 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
5 elunii 3794 . . . 4 (({𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝐶)
64, 5mpan 421 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → {𝐴, 𝐵} ∈ 𝐶)
7 elunii 3794 . . 3 ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ 𝐶) → 𝐴 𝐶)
82, 6, 7sylancr 411 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 𝐶)
93prid2 3683 . . 3 𝐵 ∈ {𝐴, 𝐵}
10 elunii 3794 . . 3 ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ 𝐶) → 𝐵 𝐶)
119, 6, 10sylancr 411 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 𝐶)
128, 11jca 304 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2726  {cpr 3577  cop 3579   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790
This theorem is referenced by:  asymref  4989
  Copyright terms: Public domain W3C validator