ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelvvg Unicode version

Theorem opelvvg 4653
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
opelvvg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )

Proof of Theorem opelvvg
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2737 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 opelxpi 4636 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
41, 2, 3syl2an 287 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   _Vcvv 2726   <.cop 3579    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610
This theorem is referenced by:  relsnopg  4708
  Copyright terms: Public domain W3C validator