ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelvvg Unicode version

Theorem opelvvg 4768
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
opelvvg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )

Proof of Theorem opelvvg
StepHypRef Expression
1 elex 2811 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2811 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 opelxpi 4751 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
41, 2, 3syl2an 289 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799   <.cop 3669    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725
This theorem is referenced by:  relsnopg  4823  opvtxfv  15823  opiedgfv  15826
  Copyright terms: Public domain W3C validator