ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelvvg GIF version

Theorem opelvvg 4708
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
opelvvg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))

Proof of Theorem opelvvg
StepHypRef Expression
1 elex 2771 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2771 . 2 (𝐵𝑊𝐵 ∈ V)
3 opelxpi 4691 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
41, 2, 3syl2an 289 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  Vcvv 2760  cop 3621   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665
This theorem is referenced by:  relsnopg  4763
  Copyright terms: Public domain W3C validator