ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelvv Unicode version

Theorem opelvv 4714
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opelvv.1  |-  A  e. 
_V
opelvv.2  |-  B  e. 
_V
Assertion
Ref Expression
opelvv  |-  <. A ,  B >.  e.  ( _V 
X.  _V )

Proof of Theorem opelvv
StepHypRef Expression
1 opelvv.1 . 2  |-  A  e. 
_V
2 opelvv.2 . 2  |-  B  e. 
_V
3 opelxpi 4696 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
41, 2, 3mp2an 426 1  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   <.cop 3626    X. cxp 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670
This theorem is referenced by:  relsnop  4770  relopabi  4792  eqop2  6245
  Copyright terms: Public domain W3C validator