| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | Unicode version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4706 |
. 2
| |
| 2 | 1 | biimpri 133 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4107 df-xp 4682 |
| This theorem is referenced by: opelxpd 4709 opelvvg 4725 opelvv 4726 opbrop 4755 fliftrel 5863 fnotovb 5990 ovi3 6085 ovres 6088 fovcdm 6091 fnovrn 6096 ovconst2 6100 oprab2co 6306 1stconst 6309 2ndconst 6310 f1od2 6323 brdifun 6649 ecopqsi 6679 brecop 6714 th3q 6729 xpcomco 6923 xpf1o 6943 xpmapenlem 6948 djulclr 7153 djurclr 7154 djulcl 7155 djurcl 7156 djuf1olem 7157 cc2lem 7380 addpiord 7431 mulpiord 7432 enqeceq 7474 1nq 7481 addpipqqslem 7484 mulpipq 7487 mulpipqqs 7488 addclnq 7490 mulclnq 7491 recexnq 7505 ltexnqq 7523 prarloclemarch 7533 prarloclemarch2 7534 nnnq 7537 enq0breq 7551 enq0eceq 7552 nqnq0 7556 addnnnq0 7564 mulnnnq0 7565 addclnq0 7566 mulclnq0 7567 nqpnq0nq 7568 prarloclemlt 7608 prarloclemlo 7609 prarloclemcalc 7617 genpelxp 7626 nqprm 7657 ltexprlempr 7723 recexprlempr 7747 cauappcvgprlemcl 7768 cauappcvgprlemladd 7773 caucvgprlemcl 7791 caucvgprprlemcl 7819 enreceq 7851 addsrpr 7860 mulsrpr 7861 0r 7865 1sr 7866 m1r 7867 addclsr 7868 mulclsr 7869 prsrcl 7899 mappsrprg 7919 addcnsr 7949 mulcnsr 7950 addcnsrec 7957 mulcnsrec 7958 pitonnlem2 7962 pitonn 7963 pitore 7965 recnnre 7966 axaddcl 7979 axmulcl 7981 xrlenlt 8139 frecuzrdgg 10563 frecuzrdgsuctlem 10570 seq3val 10607 swrdval 11104 cnrecnv 11254 eucalgf 12410 eucalg 12414 qredeu 12452 qnumdenbi 12547 crth 12579 phimullem 12580 setscom 12905 setsslid 12916 imasaddfnlemg 13179 imasaddflemg 13181 txbas 14763 upxp 14777 uptx 14779 txlm 14784 cnmpt21 14796 txswaphmeolem 14825 txswaphmeo 14826 comet 15004 qtopbasss 15026 cnmetdval 15034 remetdval 15052 tgqioo 15060 dvcnp2cntop 15204 dvef 15232 djucllem 15773 pwle2 15972 |
| Copyright terms: Public domain | W3C validator |