| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | Unicode version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4694 |
. 2
| |
| 2 | 1 | biimpri 133 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: opelxpd 4697 opelvvg 4713 opelvv 4714 opbrop 4743 fliftrel 5842 fnotovb 5969 ovi3 6064 ovres 6067 fovcdm 6070 fnovrn 6075 ovconst2 6079 oprab2co 6285 1stconst 6288 2ndconst 6289 f1od2 6302 brdifun 6628 ecopqsi 6658 brecop 6693 th3q 6708 xpcomco 6894 xpf1o 6914 xpmapenlem 6919 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djuf1olem 7128 cc2lem 7349 addpiord 7400 mulpiord 7401 enqeceq 7443 1nq 7450 addpipqqslem 7453 mulpipq 7456 mulpipqqs 7457 addclnq 7459 mulclnq 7460 recexnq 7474 ltexnqq 7492 prarloclemarch 7502 prarloclemarch2 7503 nnnq 7506 enq0breq 7520 enq0eceq 7521 nqnq0 7525 addnnnq0 7533 mulnnnq0 7534 addclnq0 7535 mulclnq0 7536 nqpnq0nq 7537 prarloclemlt 7577 prarloclemlo 7578 prarloclemcalc 7586 genpelxp 7595 nqprm 7626 ltexprlempr 7692 recexprlempr 7716 cauappcvgprlemcl 7737 cauappcvgprlemladd 7742 caucvgprlemcl 7760 caucvgprprlemcl 7788 enreceq 7820 addsrpr 7829 mulsrpr 7830 0r 7834 1sr 7835 m1r 7836 addclsr 7837 mulclsr 7838 prsrcl 7868 mappsrprg 7888 addcnsr 7918 mulcnsr 7919 addcnsrec 7926 mulcnsrec 7927 pitonnlem2 7931 pitonn 7932 pitore 7934 recnnre 7935 axaddcl 7948 axmulcl 7950 xrlenlt 8108 frecuzrdgg 10525 frecuzrdgsuctlem 10532 seq3val 10569 cnrecnv 11092 eucalgf 12248 eucalg 12252 qredeu 12290 qnumdenbi 12385 crth 12417 phimullem 12418 setscom 12743 setsslid 12754 imasaddfnlemg 13016 imasaddflemg 13018 txbas 14578 upxp 14592 uptx 14594 txlm 14599 cnmpt21 14611 txswaphmeolem 14640 txswaphmeo 14641 comet 14819 qtopbasss 14841 cnmetdval 14849 remetdval 14867 tgqioo 14875 dvcnp2cntop 15019 dvef 15047 djucllem 15530 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |