Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxpi | Unicode version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4615 | . 2 | |
2 | 1 | biimpri 132 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 cop 3563 cxp 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-xp 4591 |
This theorem is referenced by: opelxpd 4618 opelvvg 4634 opelvv 4635 opbrop 4664 fliftrel 5739 fnotovb 5861 ovi3 5954 ovres 5957 fovrn 5960 fnovrn 5965 ovconst2 5969 oprab2co 6162 1stconst 6165 2ndconst 6166 f1od2 6179 brdifun 6504 ecopqsi 6532 brecop 6567 th3q 6582 xpcomco 6768 xpf1o 6786 xpmapenlem 6791 djulclr 6987 djurclr 6988 djulcl 6989 djurcl 6990 djuf1olem 6991 cc2lem 7180 addpiord 7230 mulpiord 7231 enqeceq 7273 1nq 7280 addpipqqslem 7283 mulpipq 7286 mulpipqqs 7287 addclnq 7289 mulclnq 7290 recexnq 7304 ltexnqq 7322 prarloclemarch 7332 prarloclemarch2 7333 nnnq 7336 enq0breq 7350 enq0eceq 7351 nqnq0 7355 addnnnq0 7363 mulnnnq0 7364 addclnq0 7365 mulclnq0 7366 nqpnq0nq 7367 prarloclemlt 7407 prarloclemlo 7408 prarloclemcalc 7416 genpelxp 7425 nqprm 7456 ltexprlempr 7522 recexprlempr 7546 cauappcvgprlemcl 7567 cauappcvgprlemladd 7572 caucvgprlemcl 7590 caucvgprprlemcl 7618 enreceq 7650 addsrpr 7659 mulsrpr 7660 0r 7664 1sr 7665 m1r 7666 addclsr 7667 mulclsr 7668 prsrcl 7698 mappsrprg 7718 addcnsr 7748 mulcnsr 7749 addcnsrec 7756 mulcnsrec 7757 pitonnlem2 7761 pitonn 7762 pitore 7764 recnnre 7765 axaddcl 7778 axmulcl 7780 xrlenlt 7936 frecuzrdgg 10308 frecuzrdgsuctlem 10315 seq3val 10350 cnrecnv 10803 eucalgf 11923 eucalg 11927 qredeu 11965 qnumdenbi 12057 crth 12087 phimullem 12088 setscom 12201 setsslid 12211 txbas 12629 upxp 12643 uptx 12645 txlm 12650 cnmpt21 12662 txswaphmeolem 12691 txswaphmeo 12692 comet 12870 qtopbasss 12892 cnmetdval 12900 remetdval 12910 tgqioo 12918 dvcnp2cntop 13034 dvef 13059 djucllem 13345 pwle2 13541 |
Copyright terms: Public domain | W3C validator |