![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelxpi | Unicode version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4527 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-opab 3948 df-xp 4503 |
This theorem is referenced by: opelxpd 4530 opelvvg 4546 opelvv 4547 opbrop 4576 fliftrel 5645 fnotovb 5766 ovi3 5859 ovres 5862 fovrn 5865 fnovrn 5870 ovconst2 5874 oprab2co 6067 1stconst 6070 2ndconst 6071 f1od2 6084 brdifun 6408 ecopqsi 6436 brecop 6471 th3q 6486 xpcomco 6671 xpf1o 6689 xpmapenlem 6694 djulclr 6884 djurclr 6885 djulcl 6886 djurcl 6887 djuf1olem 6888 addpiord 7066 mulpiord 7067 enqeceq 7109 1nq 7116 addpipqqslem 7119 mulpipq 7122 mulpipqqs 7123 addclnq 7125 mulclnq 7126 recexnq 7140 ltexnqq 7158 prarloclemarch 7168 prarloclemarch2 7169 nnnq 7172 enq0breq 7186 enq0eceq 7187 nqnq0 7191 addnnnq0 7199 mulnnnq0 7200 addclnq0 7201 mulclnq0 7202 nqpnq0nq 7203 prarloclemlt 7243 prarloclemlo 7244 prarloclemcalc 7252 genpelxp 7261 nqprm 7292 ltexprlempr 7358 recexprlempr 7382 cauappcvgprlemcl 7403 cauappcvgprlemladd 7408 caucvgprlemcl 7426 caucvgprprlemcl 7454 enreceq 7473 addsrpr 7482 mulsrpr 7483 0r 7487 1sr 7488 m1r 7489 addclsr 7490 mulclsr 7491 prsrcl 7520 addcnsr 7563 mulcnsr 7564 addcnsrec 7571 mulcnsrec 7572 pitonnlem2 7576 pitonn 7577 pitore 7579 recnnre 7580 axaddcl 7593 axmulcl 7595 xrlenlt 7747 frecuzrdgg 10076 frecuzrdgsuctlem 10083 seq3val 10118 cnrecnv 10569 eucalgf 11576 eucalg 11580 qredeu 11618 qnumdenbi 11709 crth 11739 phimullem 11740 setscom 11836 setsslid 11846 txbas 12263 upxp 12277 uptx 12279 txlm 12284 cnmpt21 12296 comet 12482 qtopbasss 12504 cnmetdval 12512 remetdval 12519 tgqioo 12527 dvcnp2cntop 12612 djucllem 12690 pwle2 12876 |
Copyright terms: Public domain | W3C validator |