![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelxpi | Unicode version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4689 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 133 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 |
This theorem is referenced by: opelxpd 4692 opelvvg 4708 opelvv 4709 opbrop 4738 fliftrel 5835 fnotovb 5961 ovi3 6055 ovres 6058 fovcdm 6061 fnovrn 6066 ovconst2 6070 oprab2co 6271 1stconst 6274 2ndconst 6275 f1od2 6288 brdifun 6614 ecopqsi 6644 brecop 6679 th3q 6694 xpcomco 6880 xpf1o 6900 xpmapenlem 6905 djulclr 7108 djurclr 7109 djulcl 7110 djurcl 7111 djuf1olem 7112 cc2lem 7326 addpiord 7376 mulpiord 7377 enqeceq 7419 1nq 7426 addpipqqslem 7429 mulpipq 7432 mulpipqqs 7433 addclnq 7435 mulclnq 7436 recexnq 7450 ltexnqq 7468 prarloclemarch 7478 prarloclemarch2 7479 nnnq 7482 enq0breq 7496 enq0eceq 7497 nqnq0 7501 addnnnq0 7509 mulnnnq0 7510 addclnq0 7511 mulclnq0 7512 nqpnq0nq 7513 prarloclemlt 7553 prarloclemlo 7554 prarloclemcalc 7562 genpelxp 7571 nqprm 7602 ltexprlempr 7668 recexprlempr 7692 cauappcvgprlemcl 7713 cauappcvgprlemladd 7718 caucvgprlemcl 7736 caucvgprprlemcl 7764 enreceq 7796 addsrpr 7805 mulsrpr 7806 0r 7810 1sr 7811 m1r 7812 addclsr 7813 mulclsr 7814 prsrcl 7844 mappsrprg 7864 addcnsr 7894 mulcnsr 7895 addcnsrec 7902 mulcnsrec 7903 pitonnlem2 7907 pitonn 7908 pitore 7910 recnnre 7911 axaddcl 7924 axmulcl 7926 xrlenlt 8084 frecuzrdgg 10487 frecuzrdgsuctlem 10494 seq3val 10531 cnrecnv 11054 eucalgf 12193 eucalg 12197 qredeu 12235 qnumdenbi 12330 crth 12362 phimullem 12363 setscom 12658 setsslid 12669 imasaddfnlemg 12897 imasaddflemg 12899 txbas 14426 upxp 14440 uptx 14442 txlm 14447 cnmpt21 14459 txswaphmeolem 14488 txswaphmeo 14489 comet 14667 qtopbasss 14689 cnmetdval 14697 remetdval 14707 tgqioo 14715 dvcnp2cntop 14848 dvef 14873 djucllem 15292 pwle2 15489 |
Copyright terms: Public domain | W3C validator |