| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclr | Unicode version | ||
| Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| vtoclr.1 |
|
| vtoclr.2 |
|
| Ref | Expression |
|---|---|
| vtoclr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclr.1 |
. . . . . 6
| |
| 2 | 1 | brrelex1i 4716 |
. . . . 5
|
| 3 | 1 | brrelex2i 4717 |
. . . . 5
|
| 4 | 2, 3 | jca 306 |
. . . 4
|
| 5 | 1 | brrelex2i 4717 |
. . . 4
|
| 6 | breq1 4046 |
. . . . . . . 8
| |
| 7 | 6 | anbi1d 465 |
. . . . . . 7
|
| 8 | breq1 4046 |
. . . . . . 7
| |
| 9 | 7, 8 | imbi12d 234 |
. . . . . 6
|
| 10 | 9 | imbi2d 230 |
. . . . 5
|
| 11 | breq2 4047 |
. . . . . . . 8
| |
| 12 | breq1 4046 |
. . . . . . . 8
| |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . 7
|
| 14 | 13 | imbi1d 231 |
. . . . . 6
|
| 15 | 14 | imbi2d 230 |
. . . . 5
|
| 16 | breq2 4047 |
. . . . . . . 8
| |
| 17 | 16 | anbi2d 464 |
. . . . . . 7
|
| 18 | breq2 4047 |
. . . . . . 7
| |
| 19 | 17, 18 | imbi12d 234 |
. . . . . 6
|
| 20 | vtoclr.2 |
. . . . . 6
| |
| 21 | 19, 20 | vtoclg 2832 |
. . . . 5
|
| 22 | 10, 15, 21 | vtocl2g 2836 |
. . . 4
|
| 23 | 4, 5, 22 | syl2im 38 |
. . 3
|
| 24 | 23 | imp 124 |
. 2
|
| 25 | 24 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 |
| This theorem is referenced by: domtr 6862 |
| Copyright terms: Public domain | W3C validator |