Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclr | Unicode version |
Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
vtoclr.1 | |
vtoclr.2 |
Ref | Expression |
---|---|
vtoclr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclr.1 | . . . . . 6 | |
2 | 1 | brrelex1i 4654 | . . . . 5 |
3 | 1 | brrelex2i 4655 | . . . . 5 |
4 | 2, 3 | jca 304 | . . . 4 |
5 | 1 | brrelex2i 4655 | . . . 4 |
6 | breq1 3992 | . . . . . . . 8 | |
7 | 6 | anbi1d 462 | . . . . . . 7 |
8 | breq1 3992 | . . . . . . 7 | |
9 | 7, 8 | imbi12d 233 | . . . . . 6 |
10 | 9 | imbi2d 229 | . . . . 5 |
11 | breq2 3993 | . . . . . . . 8 | |
12 | breq1 3992 | . . . . . . . 8 | |
13 | 11, 12 | anbi12d 470 | . . . . . . 7 |
14 | 13 | imbi1d 230 | . . . . . 6 |
15 | 14 | imbi2d 229 | . . . . 5 |
16 | breq2 3993 | . . . . . . . 8 | |
17 | 16 | anbi2d 461 | . . . . . . 7 |
18 | breq2 3993 | . . . . . . 7 | |
19 | 17, 18 | imbi12d 233 | . . . . . 6 |
20 | vtoclr.2 | . . . . . 6 | |
21 | 19, 20 | vtoclg 2790 | . . . . 5 |
22 | 10, 15, 21 | vtocl2g 2794 | . . . 4 |
23 | 4, 5, 22 | syl2im 38 | . . 3 |
24 | 23 | imp 123 | . 2 |
25 | 24 | pm2.43i 49 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 class class class wbr 3989 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: domtr 6763 |
Copyright terms: Public domain | W3C validator |