| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclr | Unicode version | ||
| Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| vtoclr.1 |
|
| vtoclr.2 |
|
| Ref | Expression |
|---|---|
| vtoclr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclr.1 |
. . . . . 6
| |
| 2 | 1 | brrelex1i 4726 |
. . . . 5
|
| 3 | 1 | brrelex2i 4727 |
. . . . 5
|
| 4 | 2, 3 | jca 306 |
. . . 4
|
| 5 | 1 | brrelex2i 4727 |
. . . 4
|
| 6 | breq1 4054 |
. . . . . . . 8
| |
| 7 | 6 | anbi1d 465 |
. . . . . . 7
|
| 8 | breq1 4054 |
. . . . . . 7
| |
| 9 | 7, 8 | imbi12d 234 |
. . . . . 6
|
| 10 | 9 | imbi2d 230 |
. . . . 5
|
| 11 | breq2 4055 |
. . . . . . . 8
| |
| 12 | breq1 4054 |
. . . . . . . 8
| |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . 7
|
| 14 | 13 | imbi1d 231 |
. . . . . 6
|
| 15 | 14 | imbi2d 230 |
. . . . 5
|
| 16 | breq2 4055 |
. . . . . . . 8
| |
| 17 | 16 | anbi2d 464 |
. . . . . . 7
|
| 18 | breq2 4055 |
. . . . . . 7
| |
| 19 | 17, 18 | imbi12d 234 |
. . . . . 6
|
| 20 | vtoclr.2 |
. . . . . 6
| |
| 21 | 19, 20 | vtoclg 2835 |
. . . . 5
|
| 22 | 10, 15, 21 | vtocl2g 2839 |
. . . 4
|
| 23 | 4, 5, 22 | syl2im 38 |
. . 3
|
| 24 | 23 | imp 124 |
. 2
|
| 25 | 24 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 |
| This theorem is referenced by: domtr 6890 |
| Copyright terms: Public domain | W3C validator |