| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtoclr | Unicode version | ||
| Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| vtoclr.1 | 
 | 
| vtoclr.2 | 
 | 
| Ref | Expression | 
|---|---|
| vtoclr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtoclr.1 | 
. . . . . 6
 | |
| 2 | 1 | brrelex1i 4706 | 
. . . . 5
 | 
| 3 | 1 | brrelex2i 4707 | 
. . . . 5
 | 
| 4 | 2, 3 | jca 306 | 
. . . 4
 | 
| 5 | 1 | brrelex2i 4707 | 
. . . 4
 | 
| 6 | breq1 4036 | 
. . . . . . . 8
 | |
| 7 | 6 | anbi1d 465 | 
. . . . . . 7
 | 
| 8 | breq1 4036 | 
. . . . . . 7
 | |
| 9 | 7, 8 | imbi12d 234 | 
. . . . . 6
 | 
| 10 | 9 | imbi2d 230 | 
. . . . 5
 | 
| 11 | breq2 4037 | 
. . . . . . . 8
 | |
| 12 | breq1 4036 | 
. . . . . . . 8
 | |
| 13 | 11, 12 | anbi12d 473 | 
. . . . . . 7
 | 
| 14 | 13 | imbi1d 231 | 
. . . . . 6
 | 
| 15 | 14 | imbi2d 230 | 
. . . . 5
 | 
| 16 | breq2 4037 | 
. . . . . . . 8
 | |
| 17 | 16 | anbi2d 464 | 
. . . . . . 7
 | 
| 18 | breq2 4037 | 
. . . . . . 7
 | |
| 19 | 17, 18 | imbi12d 234 | 
. . . . . 6
 | 
| 20 | vtoclr.2 | 
. . . . . 6
 | |
| 21 | 19, 20 | vtoclg 2824 | 
. . . . 5
 | 
| 22 | 10, 15, 21 | vtocl2g 2828 | 
. . . 4
 | 
| 23 | 4, 5, 22 | syl2im 38 | 
. . 3
 | 
| 24 | 23 | imp 124 | 
. 2
 | 
| 25 | 24 | pm2.43i 49 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 | 
| This theorem is referenced by: domtr 6844 | 
| Copyright terms: Public domain | W3C validator |