Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclr | Unicode version |
Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
vtoclr.1 | |
vtoclr.2 |
Ref | Expression |
---|---|
vtoclr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclr.1 | . . . . . 6 | |
2 | 1 | brrelex1i 4663 | . . . . 5 |
3 | 1 | brrelex2i 4664 | . . . . 5 |
4 | 2, 3 | jca 306 | . . . 4 |
5 | 1 | brrelex2i 4664 | . . . 4 |
6 | breq1 4001 | . . . . . . . 8 | |
7 | 6 | anbi1d 465 | . . . . . . 7 |
8 | breq1 4001 | . . . . . . 7 | |
9 | 7, 8 | imbi12d 234 | . . . . . 6 |
10 | 9 | imbi2d 230 | . . . . 5 |
11 | breq2 4002 | . . . . . . . 8 | |
12 | breq1 4001 | . . . . . . . 8 | |
13 | 11, 12 | anbi12d 473 | . . . . . . 7 |
14 | 13 | imbi1d 231 | . . . . . 6 |
15 | 14 | imbi2d 230 | . . . . 5 |
16 | breq2 4002 | . . . . . . . 8 | |
17 | 16 | anbi2d 464 | . . . . . . 7 |
18 | breq2 4002 | . . . . . . 7 | |
19 | 17, 18 | imbi12d 234 | . . . . . 6 |
20 | vtoclr.2 | . . . . . 6 | |
21 | 19, 20 | vtoclg 2795 | . . . . 5 |
22 | 10, 15, 21 | vtocl2g 2799 | . . . 4 |
23 | 4, 5, 22 | syl2im 38 | . . 3 |
24 | 23 | imp 124 | . 2 |
25 | 24 | pm2.43i 49 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 cvv 2735 class class class wbr 3998 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 |
This theorem is referenced by: domtr 6775 |
Copyright terms: Public domain | W3C validator |