| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeqex | GIF version | ||
| Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
| Ref | Expression |
|---|---|
| opeqex | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2270 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝑥 ∈ 〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 〈𝐶, 𝐷〉)) | |
| 2 | 1 | exbidv 1849 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ ∃𝑥 𝑥 ∈ 〈𝐶, 𝐷〉)) |
| 3 | opm 4286 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | opm 4286 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐶, 𝐷〉 ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
| 5 | 2, 3, 4 | 3bitr3g 222 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 〈cop 3641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 |
| This theorem is referenced by: epelg 4345 |
| Copyright terms: Public domain | W3C validator |