ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqex GIF version

Theorem opeqex 4302
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))

Proof of Theorem opeqex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2270 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ ⟨𝐶, 𝐷⟩))
21exbidv 1849 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩))
3 opm 4286 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 opm 4286 . 2 (∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))
52, 3, 43bitr3g 222 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cop 3641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647
This theorem is referenced by:  epelg  4345
  Copyright terms: Public domain W3C validator