ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqex GIF version

Theorem opeqex 4067
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))

Proof of Theorem opeqex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2151 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ ⟨𝐶, 𝐷⟩))
21exbidv 1753 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩))
3 opm 4052 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 opm 4052 . 2 (∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))
52, 3, 43bitr3g 220 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619  cop 3444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450
This theorem is referenced by:  epelg  4108
  Copyright terms: Public domain W3C validator