Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeqex | GIF version |
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
Ref | Expression |
---|---|
opeqex | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝑥 ∈ 〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 〈𝐶, 𝐷〉)) | |
2 | 1 | exbidv 1813 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ ∃𝑥 𝑥 ∈ 〈𝐶, 𝐷〉)) |
3 | opm 4212 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | opm 4212 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐶, 𝐷〉 ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
5 | 2, 3, 4 | 3bitr3g 221 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: epelg 4268 |
Copyright terms: Public domain | W3C validator |