ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqex GIF version

Theorem opeqex 4270
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))

Proof of Theorem opeqex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2253 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ ⟨𝐶, 𝐷⟩))
21exbidv 1836 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩))
3 opm 4255 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 opm 4255 . 2 (∃𝑥 𝑥 ∈ ⟨𝐶, 𝐷⟩ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))
52, 3, 43bitr3g 222 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2160  Vcvv 2752  cop 3613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619
This theorem is referenced by:  epelg  4311
  Copyright terms: Public domain W3C validator