| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeqex | GIF version | ||
| Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
| Ref | Expression |
|---|---|
| opeqex | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2268 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝑥 ∈ 〈𝐴, 𝐵〉 ↔ 𝑥 ∈ 〈𝐶, 𝐷〉)) | |
| 2 | 1 | exbidv 1847 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ ∃𝑥 𝑥 ∈ 〈𝐶, 𝐷〉)) |
| 3 | opm 4277 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | opm 4277 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐶, 𝐷〉 ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
| 5 | 2, 3, 4 | 3bitr3g 222 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 〈cop 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 |
| This theorem is referenced by: epelg 4336 |
| Copyright terms: Public domain | W3C validator |