ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth2 Unicode version

Theorem opth2 4202
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1  |-  C  e. 
_V
opth2.2  |-  D  e. 
_V
Assertion
Ref Expression
opth2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2  |-  C  e. 
_V
2 opth2.2 . 2  |-  D  e. 
_V
3 opthg2 4201 . 2  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
41, 2, 3mp2an 423 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   _Vcvv 2712   <.cop 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570
This theorem is referenced by:  eqvinop  4205  opelxp  4618  fsn  5641  dfplpq2  7276  ltresr  7761  frecuzrdgtcl  10320  frecuzrdgfunlem  10327
  Copyright terms: Public domain W3C validator