ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfplpq2 Unicode version

Theorem dfplpq2 7414
Description: Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
Assertion
Ref Expression
dfplpq2  |-  +pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
) }
Distinct variable group:    x, y, z, w, v, u, f

Proof of Theorem dfplpq2
StepHypRef Expression
1 df-mpo 5923 . 2  |-  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >. ) }
2 df-plpq 7404 . 2  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
3 1st2nd2 6228 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  ->  x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >. )
43eqeq1d 2202 . . . . . . . . 9  |-  ( x  e.  ( N.  X.  N. )  ->  ( x  =  <. w ,  v
>. 
<-> 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >. )
)
5 1st2nd2 6228 . . . . . . . . . 10  |-  ( y  e.  ( N.  X.  N. )  ->  y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >. )
65eqeq1d 2202 . . . . . . . . 9  |-  ( y  e.  ( N.  X.  N. )  ->  ( y  =  <. u ,  f
>. 
<-> 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >. )
)
74, 6bi2anan9 606 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  <->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )
) )
87anbi1d 465 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )
) )
9 xp1st 6218 . . . . . . . . . . . . . 14  |-  ( y  e.  ( N.  X.  N. )  ->  ( 1st `  y )  e.  N. )
109ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( 1st `  y )  e.  N. )
117biimpa 296 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )
)
1211simprd 114 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  <. ( 1st `  y ) ,  ( 2nd `  y )
>.  =  <. u ,  f >. )
13 vex 2763 . . . . . . . . . . . . . . . . 17  |-  u  e. 
_V
14 vex 2763 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
1513, 14opth2 4269 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >.  <->  ( ( 1st `  y )  =  u  /\  ( 2nd `  y )  =  f ) )
1615simplbi 274 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >.  ->  ( 1st `  y )  =  u )
1716eleq1d 2262 . . . . . . . . . . . . . 14  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >.  ->  (
( 1st `  y
)  e.  N.  <->  u  e.  N. ) )
1812, 17syl 14 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( ( 1st `  y )  e. 
N. 
<->  u  e.  N. )
)
1910, 18mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  u  e.  N. )
20 xp2nd 6219 . . . . . . . . . . . . . 14  |-  ( x  e.  ( N.  X.  N. )  ->  ( 2nd `  x )  e.  N. )
2120ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( 2nd `  x )  e.  N. )
2211simpld 112 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  <. ( 1st `  x ) ,  ( 2nd `  x )
>.  =  <. w ,  v >. )
23 vex 2763 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
24 vex 2763 . . . . . . . . . . . . . . . . 17  |-  v  e. 
_V
2523, 24opth2 4269 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  <->  ( ( 1st `  x )  =  w  /\  ( 2nd `  x )  =  v ) )
2625simprbi 275 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  ->  ( 2nd `  x )  =  v )
2726eleq1d 2262 . . . . . . . . . . . . . 14  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  ->  (
( 2nd `  x
)  e.  N.  <->  v  e.  N. ) )
2822, 27syl 14 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( ( 2nd `  x )  e. 
N. 
<->  v  e.  N. )
)
2921, 28mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  v  e.  N. )
30 mulcompig 7391 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( u  .N  v
)  =  ( v  .N  u ) )
3119, 29, 30syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( u  .N  v )  =  ( v  .N  u ) )
3231oveq2d 5934 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( (
w  .N  f )  +N  ( u  .N  v ) )  =  ( ( w  .N  f )  +N  (
v  .N  u ) ) )
3332opeq1d 3810 . . . . . . . . 9  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  <. ( ( w  .N  f )  +N  ( u  .N  v ) ) ,  ( v  .N  f
) >.  =  <. (
( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
3433eqeq2d 2205 . . . . . . . 8  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( z  =  <. ( ( w  .N  f )  +N  ( u  .N  v
) ) ,  ( v  .N  f )
>. 
<->  z  =  <. (
( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
)
3534pm5.32da 452 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. ) ) )
368, 35bitr3d 190 . . . . . 6  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. ) ) )
37364exbidv 1881 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. ) ) )
38 xp1st 6218 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( 1st `  x )  e.  N. )
3938, 20jca 306 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( ( 1st `  x )  e.  N.  /\  ( 2nd `  x )  e. 
N. ) )
40 xp2nd 6219 . . . . . . 7  |-  ( y  e.  ( N.  X.  N. )  ->  ( 2nd `  y )  e.  N. )
419, 40jca 306 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( ( 1st `  y )  e.  N.  /\  ( 2nd `  y )  e. 
N. ) )
42 simpll 527 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  w  =  ( 1st `  x
) )
43 simprr 531 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  f  =  ( 2nd `  y
) )
4442, 43oveq12d 5936 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
w  .N  f )  =  ( ( 1st `  x )  .N  ( 2nd `  y ) ) )
45 simprl 529 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  u  =  ( 1st `  y
) )
46 simplr 528 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  v  =  ( 2nd `  x
) )
4745, 46oveq12d 5936 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
u  .N  v )  =  ( ( 1st `  y )  .N  ( 2nd `  x ) ) )
4844, 47oveq12d 5936 . . . . . . . . 9  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
( w  .N  f
)  +N  ( u  .N  v ) )  =  ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
4946, 43oveq12d 5936 . . . . . . . . 9  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
v  .N  f )  =  ( ( 2nd `  x )  .N  ( 2nd `  y ) ) )
5048, 49opeq12d 3812 . . . . . . . 8  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  <. (
( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >.  =  <. ( ( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
5150eqeq2d 2205 . . . . . . 7  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
z  =  <. (
( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >.  <->  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >. )
)
5251copsex4g 4276 . . . . . 6  |-  ( ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  /\  ( ( 1st `  y
)  e.  N.  /\  ( 2nd `  y )  e.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5339, 41, 52syl2an 289 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5437, 53bitr3d 190 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. )  <->  z  =  <. ( ( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5554pm5.32i 454 . . 3  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
)  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5655oprabbii 5973 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >. ) }
571, 2, 563eqtr4i 2224 1  |-  +pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3621    X. cxp 4657   ` cfv 5254  (class class class)co 5918   {coprab 5919    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192   N.cnpi 7332    +N cpli 7333    .N cmi 7334    +pQ cplpq 7336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-ni 7364  df-mi 7366  df-plpq 7404
This theorem is referenced by:  addpipqqs  7430
  Copyright terms: Public domain W3C validator