ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfplpq2 Unicode version

Theorem dfplpq2 7467
Description: Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
Assertion
Ref Expression
dfplpq2  |-  +pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
) }
Distinct variable group:    x, y, z, w, v, u, f

Proof of Theorem dfplpq2
StepHypRef Expression
1 df-mpo 5949 . 2  |-  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >. ) }
2 df-plpq 7457 . 2  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
3 1st2nd2 6261 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  ->  x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >. )
43eqeq1d 2214 . . . . . . . . 9  |-  ( x  e.  ( N.  X.  N. )  ->  ( x  =  <. w ,  v
>. 
<-> 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >. )
)
5 1st2nd2 6261 . . . . . . . . . 10  |-  ( y  e.  ( N.  X.  N. )  ->  y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >. )
65eqeq1d 2214 . . . . . . . . 9  |-  ( y  e.  ( N.  X.  N. )  ->  ( y  =  <. u ,  f
>. 
<-> 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >. )
)
74, 6bi2anan9 606 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  <->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )
) )
87anbi1d 465 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )
) )
9 xp1st 6251 . . . . . . . . . . . . . 14  |-  ( y  e.  ( N.  X.  N. )  ->  ( 1st `  y )  e.  N. )
109ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( 1st `  y )  e.  N. )
117biimpa 296 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )
)
1211simprd 114 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  <. ( 1st `  y ) ,  ( 2nd `  y )
>.  =  <. u ,  f >. )
13 vex 2775 . . . . . . . . . . . . . . . . 17  |-  u  e. 
_V
14 vex 2775 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
1513, 14opth2 4284 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >.  <->  ( ( 1st `  y )  =  u  /\  ( 2nd `  y )  =  f ) )
1615simplbi 274 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >.  ->  ( 1st `  y )  =  u )
1716eleq1d 2274 . . . . . . . . . . . . . 14  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. u ,  f >.  ->  (
( 1st `  y
)  e.  N.  <->  u  e.  N. ) )
1812, 17syl 14 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( ( 1st `  y )  e. 
N. 
<->  u  e.  N. )
)
1910, 18mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  u  e.  N. )
20 xp2nd 6252 . . . . . . . . . . . . . 14  |-  ( x  e.  ( N.  X.  N. )  ->  ( 2nd `  x )  e.  N. )
2120ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( 2nd `  x )  e.  N. )
2211simpld 112 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  <. ( 1st `  x ) ,  ( 2nd `  x )
>.  =  <. w ,  v >. )
23 vex 2775 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
24 vex 2775 . . . . . . . . . . . . . . . . 17  |-  v  e. 
_V
2523, 24opth2 4284 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  <->  ( ( 1st `  x )  =  w  /\  ( 2nd `  x )  =  v ) )
2625simprbi 275 . . . . . . . . . . . . . . 15  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  ->  ( 2nd `  x )  =  v )
2726eleq1d 2274 . . . . . . . . . . . . . 14  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  ->  (
( 2nd `  x
)  e.  N.  <->  v  e.  N. ) )
2822, 27syl 14 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( ( 2nd `  x )  e. 
N. 
<->  v  e.  N. )
)
2921, 28mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  v  e.  N. )
30 mulcompig 7444 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( u  .N  v
)  =  ( v  .N  u ) )
3119, 29, 30syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( u  .N  v )  =  ( v  .N  u ) )
3231oveq2d 5960 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( (
w  .N  f )  +N  ( u  .N  v ) )  =  ( ( w  .N  f )  +N  (
v  .N  u ) ) )
3332opeq1d 3825 . . . . . . . . 9  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  <. ( ( w  .N  f )  +N  ( u  .N  v ) ) ,  ( v  .N  f
) >.  =  <. (
( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
3433eqeq2d 2217 . . . . . . . 8  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )
)  ->  ( z  =  <. ( ( w  .N  f )  +N  ( u  .N  v
) ) ,  ( v  .N  f )
>. 
<->  z  =  <. (
( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
)
3534pm5.32da 452 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. ) ) )
368, 35bitr3d 190 . . . . . 6  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  (
( ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. ) ) )
37364exbidv 1893 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. ) ) )
38 xp1st 6251 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( 1st `  x )  e.  N. )
3938, 20jca 306 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  ( ( 1st `  x )  e.  N.  /\  ( 2nd `  x )  e. 
N. ) )
40 xp2nd 6252 . . . . . . 7  |-  ( y  e.  ( N.  X.  N. )  ->  ( 2nd `  y )  e.  N. )
419, 40jca 306 . . . . . 6  |-  ( y  e.  ( N.  X.  N. )  ->  ( ( 1st `  y )  e.  N.  /\  ( 2nd `  y )  e. 
N. ) )
42 simpll 527 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  w  =  ( 1st `  x
) )
43 simprr 531 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  f  =  ( 2nd `  y
) )
4442, 43oveq12d 5962 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
w  .N  f )  =  ( ( 1st `  x )  .N  ( 2nd `  y ) ) )
45 simprl 529 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  u  =  ( 1st `  y
) )
46 simplr 528 . . . . . . . . . . 11  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  v  =  ( 2nd `  x
) )
4745, 46oveq12d 5962 . . . . . . . . . 10  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
u  .N  v )  =  ( ( 1st `  y )  .N  ( 2nd `  x ) ) )
4844, 47oveq12d 5962 . . . . . . . . 9  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
( w  .N  f
)  +N  ( u  .N  v ) )  =  ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) )
4946, 43oveq12d 5962 . . . . . . . . 9  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
v  .N  f )  =  ( ( 2nd `  x )  .N  ( 2nd `  y ) ) )
5048, 49opeq12d 3827 . . . . . . . 8  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  <. (
( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >.  =  <. ( ( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
5150eqeq2d 2217 . . . . . . 7  |-  ( ( ( w  =  ( 1st `  x )  /\  v  =  ( 2nd `  x ) )  /\  ( u  =  ( 1st `  y
)  /\  f  =  ( 2nd `  y ) ) )  ->  (
z  =  <. (
( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >.  <->  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >. )
)
5251copsex4g 4291 . . . . . 6  |-  ( ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  /\  ( ( 1st `  y
)  e.  N.  /\  ( 2nd `  y )  e.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5339, 41, 52syl2an 289 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. w ,  v >.  /\  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( u  .N  v ) ) ,  ( v  .N  f ) >. )  <->  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5437, 53bitr3d 190 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  ->  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( ( w  .N  f )  +N  ( v  .N  u
) ) ,  ( v  .N  f )
>. )  <->  z  =  <. ( ( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5554pm5.32i 454 . . 3  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
)  <->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. ) )
5655oprabbii 6000 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  z  =  <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
) ) >. ) }
571, 2, 563eqtr4i 2236 1  |-  +pQ  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .N  f
)  +N  ( v  .N  u ) ) ,  ( v  .N  f ) >. )
) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   <.cop 3636    X. cxp 4673   ` cfv 5271  (class class class)co 5944   {coprab 5945    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225   N.cnpi 7385    +N cpli 7386    .N cmi 7387    +pQ cplpq 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506  df-omul 6507  df-ni 7417  df-mi 7419  df-plpq 7457
This theorem is referenced by:  addpipqqs  7483
  Copyright terms: Public domain W3C validator