| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opwo0id | Unicode version | ||
| Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
| Ref | Expression |
|---|---|
| opwo0id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelop 4300 |
. . . 4
| |
| 2 | disjsn 3700 |
. . . 4
| |
| 3 | 1, 2 | mpbir 146 |
. . 3
|
| 4 | disjdif2 3543 |
. . 3
| |
| 5 | 3, 4 | ax-mp 5 |
. 2
|
| 6 | 5 | eqcomi 2210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-op 3647 |
| This theorem is referenced by: fundm2domnop0 11012 |
| Copyright terms: Public domain | W3C validator |