| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opwo0id | GIF version | ||
| Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
| Ref | Expression |
|---|---|
| opwo0id | ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelop 4333 | . . . 4 ⊢ ¬ ∅ ∈ 〈𝑋, 𝑌〉 | |
| 2 | disjsn 3728 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | mpbir 146 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∩ {∅}) = ∅ |
| 4 | disjdif2 3570 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ → (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉 |
| 6 | 5 | eqcomi 2233 | 1 ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 ∩ cin 3196 ∅c0 3491 {csn 3666 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: fundm2domnop0 11062 |
| Copyright terms: Public domain | W3C validator |