| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opwo0id | GIF version | ||
| Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
| Ref | Expression |
|---|---|
| opwo0id | ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelop 4291 | . . . 4 ⊢ ¬ ∅ ∈ 〈𝑋, 𝑌〉 | |
| 2 | disjsn 3694 | . . . 4 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | mpbir 146 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∩ {∅}) = ∅ |
| 4 | disjdif2 3538 | . . 3 ⊢ ((〈𝑋, 𝑌〉 ∩ {∅}) = ∅ → (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (〈𝑋, 𝑌〉 ∖ {∅}) = 〈𝑋, 𝑌〉 |
| 6 | 5 | eqcomi 2208 | 1 ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1372 ∈ wcel 2175 ∖ cdif 3162 ∩ cin 3164 ∅c0 3459 {csn 3632 〈cop 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-pr 3639 df-op 3641 |
| This theorem is referenced by: fundm2domnop0 10988 |
| Copyright terms: Public domain | W3C validator |