ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opwo0id GIF version

Theorem opwo0id 4292
Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
opwo0id 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})

Proof of Theorem opwo0id
StepHypRef Expression
1 0nelop 4291 . . . 4 ¬ ∅ ∈ ⟨𝑋, 𝑌
2 disjsn 3694 . . . 4 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩)
31, 2mpbir 146 . . 3 (⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅
4 disjdif2 3538 . . 3 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ → (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩)
53, 4ax-mp 5 . 2 (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌
65eqcomi 2208 1 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1372  wcel 2175  cdif 3162  cin 3164  c0 3459  {csn 3632  cop 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-op 3641
This theorem is referenced by:  fundm2domnop0  10988
  Copyright terms: Public domain W3C validator