ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundm2domnop0 Unicode version

Theorem fundm2domnop0 10988
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that  ( G  \  { (/) } ) needs to be a function instead of  G) is useful for proofs for extensible structures, see structn0fun 12787. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundm2domnop0  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )

Proof of Theorem fundm2domnop0
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2dom 6896 . . 3  |-  ( 2o  ~<_  dom  G  ->  E. a  e.  dom  G E. b  e.  dom  G  -.  a  =  b )
2 elvv 4736 . . . . . . . 8  |-  ( G  e.  ( _V  X.  _V )  <->  E. x E. y  G  =  <. x ,  y >. )
3 difeq1 3283 . . . . . . . . . . . . 13  |-  ( G  =  <. x ,  y
>.  ->  ( G  \  { (/) } )  =  ( <. x ,  y
>.  \  { (/) } ) )
43funeqd 5292 . . . . . . . . . . . 12  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  ( G  \  { (/) } )  <->  Fun  ( <. x ,  y
>.  \  { (/) } ) ) )
5 opwo0id 4292 . . . . . . . . . . . . . . 15  |-  <. x ,  y >.  =  (
<. x ,  y >.  \  { (/) } )
65eqcomi 2208 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  \  { (/) } )  = 
<. x ,  y >.
76funeqi 5291 . . . . . . . . . . . . 13  |-  ( Fun  ( <. x ,  y
>.  \  { (/) } )  <->  Fun  <. x ,  y
>. )
8 dmeq 4877 . . . . . . . . . . . . . . . . 17  |-  ( G  =  <. x ,  y
>.  ->  dom  G  =  dom  <. x ,  y
>. )
98eleq2d 2274 . . . . . . . . . . . . . . . 16  |-  ( G  =  <. x ,  y
>.  ->  ( a  e. 
dom  G  <->  a  e.  dom  <.
x ,  y >.
) )
108eleq2d 2274 . . . . . . . . . . . . . . . 16  |-  ( G  =  <. x ,  y
>.  ->  ( b  e. 
dom  G  <->  b  e.  dom  <.
x ,  y >.
) )
119, 10anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( G  =  <. x ,  y
>.  ->  ( ( a  e.  dom  G  /\  b  e.  dom  G )  <-> 
( a  e.  dom  <.
x ,  y >.  /\  b  e.  dom  <.
x ,  y >.
) ) )
12 eqid 2204 . . . . . . . . . . . . . . . . . 18  |-  <. x ,  y >.  =  <. x ,  y >.
13 vex 2774 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
14 vex 2774 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
1512, 13, 14funopdmsn 5763 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  <. x ,  y
>.  /\  a  e.  dom  <.
x ,  y >.  /\  b  e.  dom  <.
x ,  y >.
)  ->  a  =  b )
16153expb 1206 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  <. x ,  y
>.  /\  ( a  e. 
dom  <. x ,  y
>.  /\  b  e.  dom  <.
x ,  y >.
) )  ->  a  =  b )
1716expcom 116 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  dom  <. x ,  y >.  /\  b  e.  dom  <. x ,  y
>. )  ->  ( Fun 
<. x ,  y >.  ->  a  =  b ) )
1811, 17biimtrdi 163 . . . . . . . . . . . . . 14  |-  ( G  =  <. x ,  y
>.  ->  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  ( Fun  <. x ,  y >.  ->  a  =  b ) ) )
1918com23 78 . . . . . . . . . . . . 13  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  <. x ,  y >.  ->  (
( a  e.  dom  G  /\  b  e.  dom  G )  ->  a  =  b ) ) )
207, 19biimtrid 152 . . . . . . . . . . . 12  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  ( <. x ,  y >.  \  { (/) } )  -> 
( ( a  e. 
dom  G  /\  b  e.  dom  G )  -> 
a  =  b ) ) )
214, 20sylbid 150 . . . . . . . . . . 11  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  ( G  \  { (/) } )  ->  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  a  =  b ) ) )
2221impcomd 255 . . . . . . . . . 10  |-  ( G  =  <. x ,  y
>.  ->  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  a  =  b ) )
2322exlimivv 1919 . . . . . . . . 9  |-  ( E. x E. y  G  =  <. x ,  y
>.  ->  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  a  =  b ) )
2423com12 30 . . . . . . . 8  |-  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  ( E. x E. y  G  = 
<. x ,  y >.  ->  a  =  b ) )
252, 24biimtrid 152 . . . . . . 7  |-  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  ( G  e.  ( _V  X.  _V )  ->  a  =  b ) )
2625con3d 632 . . . . . 6  |-  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  ( -.  a  =  b  ->  -.  G  e.  ( _V 
X.  _V ) ) )
2726ex 115 . . . . 5  |-  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  ( Fun  ( G  \  { (/) } )  ->  ( -.  a  =  b  ->  -.  G  e.  ( _V 
X.  _V ) ) ) )
2827com23 78 . . . 4  |-  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  ( -.  a  =  b  ->  ( Fun  ( G  \  { (/) } )  ->  -.  G  e.  ( _V  X.  _V ) ) ) )
2928rexlimivv 2628 . . 3  |-  ( E. a  e.  dom  G E. b  e.  dom  G  -.  a  =  b  ->  ( Fun  ( G  \  { (/) } )  ->  -.  G  e.  ( _V  X.  _V )
) )
301, 29syl 14 . 2  |-  ( 2o  ~<_  dom  G  ->  ( Fun  ( G  \  { (/)
} )  ->  -.  G  e.  ( _V  X.  _V ) ) )
3130impcom 125 1  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   E.wrex 2484   _Vcvv 2771    \ cdif 3162   (/)c0 3459   {csn 3632   <.cop 3635   class class class wbr 4043    X. cxp 4672   dom cdm 4674   Fun wfun 5264   2oc2o 6495    ~<_ cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fv 5278  df-1o 6501  df-2o 6502  df-dom 6828
This theorem is referenced by:  fundm2domnop  10989  fun2dmnop0  10990  funvtxdm2domval  15568  funiedgdm2domval  15569
  Copyright terms: Public domain W3C validator