| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fundm2domnop0 | Unicode version | ||
| Description: A function with a domain
containing (at least) two different elements is
not an ordered pair. This theorem (which requires that
|
| Ref | Expression |
|---|---|
| fundm2domnop0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2dom 6911 |
. . 3
| |
| 2 | elvv 4745 |
. . . . . . . 8
| |
| 3 | difeq1 3288 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | funeqd 5302 |
. . . . . . . . . . . 12
|
| 5 | opwo0id 4301 |
. . . . . . . . . . . . . . 15
| |
| 6 | 5 | eqcomi 2210 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | funeqi 5301 |
. . . . . . . . . . . . 13
|
| 8 | dmeq 4887 |
. . . . . . . . . . . . . . . . 17
| |
| 9 | 8 | eleq2d 2276 |
. . . . . . . . . . . . . . . 16
|
| 10 | 8 | eleq2d 2276 |
. . . . . . . . . . . . . . . 16
|
| 11 | 9, 10 | anbi12d 473 |
. . . . . . . . . . . . . . 15
|
| 12 | eqid 2206 |
. . . . . . . . . . . . . . . . . 18
| |
| 13 | vex 2776 |
. . . . . . . . . . . . . . . . . 18
| |
| 14 | vex 2776 |
. . . . . . . . . . . . . . . . . 18
| |
| 15 | 12, 13, 14 | funopdmsn 5777 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15 | 3expb 1207 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | expcom 116 |
. . . . . . . . . . . . . . 15
|
| 18 | 11, 17 | biimtrdi 163 |
. . . . . . . . . . . . . 14
|
| 19 | 18 | com23 78 |
. . . . . . . . . . . . 13
|
| 20 | 7, 19 | biimtrid 152 |
. . . . . . . . . . . 12
|
| 21 | 4, 20 | sylbid 150 |
. . . . . . . . . . 11
|
| 22 | 21 | impcomd 255 |
. . . . . . . . . 10
|
| 23 | 22 | exlimivv 1921 |
. . . . . . . . 9
|
| 24 | 23 | com12 30 |
. . . . . . . 8
|
| 25 | 2, 24 | biimtrid 152 |
. . . . . . 7
|
| 26 | 25 | con3d 632 |
. . . . . 6
|
| 27 | 26 | ex 115 |
. . . . 5
|
| 28 | 27 | com23 78 |
. . . 4
|
| 29 | 28 | rexlimivv 2630 |
. . 3
|
| 30 | 1, 29 | syl 14 |
. 2
|
| 31 | 30 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fv 5288 df-1o 6515 df-2o 6516 df-dom 6842 |
| This theorem is referenced by: fundm2domnop 11013 fun2dmnop0 11014 funvtxdm2domval 15703 funiedgdm2domval 15704 |
| Copyright terms: Public domain | W3C validator |