ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundm2domnop0 Unicode version

Theorem fundm2domnop0 11012
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that  ( G  \  { (/) } ) needs to be a function instead of  G) is useful for proofs for extensible structures, see structn0fun 12920. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundm2domnop0  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )

Proof of Theorem fundm2domnop0
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2dom 6911 . . 3  |-  ( 2o  ~<_  dom  G  ->  E. a  e.  dom  G E. b  e.  dom  G  -.  a  =  b )
2 elvv 4745 . . . . . . . 8  |-  ( G  e.  ( _V  X.  _V )  <->  E. x E. y  G  =  <. x ,  y >. )
3 difeq1 3288 . . . . . . . . . . . . 13  |-  ( G  =  <. x ,  y
>.  ->  ( G  \  { (/) } )  =  ( <. x ,  y
>.  \  { (/) } ) )
43funeqd 5302 . . . . . . . . . . . 12  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  ( G  \  { (/) } )  <->  Fun  ( <. x ,  y
>.  \  { (/) } ) ) )
5 opwo0id 4301 . . . . . . . . . . . . . . 15  |-  <. x ,  y >.  =  (
<. x ,  y >.  \  { (/) } )
65eqcomi 2210 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  \  { (/) } )  = 
<. x ,  y >.
76funeqi 5301 . . . . . . . . . . . . 13  |-  ( Fun  ( <. x ,  y
>.  \  { (/) } )  <->  Fun  <. x ,  y
>. )
8 dmeq 4887 . . . . . . . . . . . . . . . . 17  |-  ( G  =  <. x ,  y
>.  ->  dom  G  =  dom  <. x ,  y
>. )
98eleq2d 2276 . . . . . . . . . . . . . . . 16  |-  ( G  =  <. x ,  y
>.  ->  ( a  e. 
dom  G  <->  a  e.  dom  <.
x ,  y >.
) )
108eleq2d 2276 . . . . . . . . . . . . . . . 16  |-  ( G  =  <. x ,  y
>.  ->  ( b  e. 
dom  G  <->  b  e.  dom  <.
x ,  y >.
) )
119, 10anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( G  =  <. x ,  y
>.  ->  ( ( a  e.  dom  G  /\  b  e.  dom  G )  <-> 
( a  e.  dom  <.
x ,  y >.  /\  b  e.  dom  <.
x ,  y >.
) ) )
12 eqid 2206 . . . . . . . . . . . . . . . . . 18  |-  <. x ,  y >.  =  <. x ,  y >.
13 vex 2776 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
14 vex 2776 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
1512, 13, 14funopdmsn 5777 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  <. x ,  y
>.  /\  a  e.  dom  <.
x ,  y >.  /\  b  e.  dom  <.
x ,  y >.
)  ->  a  =  b )
16153expb 1207 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  <. x ,  y
>.  /\  ( a  e. 
dom  <. x ,  y
>.  /\  b  e.  dom  <.
x ,  y >.
) )  ->  a  =  b )
1716expcom 116 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  dom  <. x ,  y >.  /\  b  e.  dom  <. x ,  y
>. )  ->  ( Fun 
<. x ,  y >.  ->  a  =  b ) )
1811, 17biimtrdi 163 . . . . . . . . . . . . . 14  |-  ( G  =  <. x ,  y
>.  ->  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  ( Fun  <. x ,  y >.  ->  a  =  b ) ) )
1918com23 78 . . . . . . . . . . . . 13  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  <. x ,  y >.  ->  (
( a  e.  dom  G  /\  b  e.  dom  G )  ->  a  =  b ) ) )
207, 19biimtrid 152 . . . . . . . . . . . 12  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  ( <. x ,  y >.  \  { (/) } )  -> 
( ( a  e. 
dom  G  /\  b  e.  dom  G )  -> 
a  =  b ) ) )
214, 20sylbid 150 . . . . . . . . . . 11  |-  ( G  =  <. x ,  y
>.  ->  ( Fun  ( G  \  { (/) } )  ->  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  a  =  b ) ) )
2221impcomd 255 . . . . . . . . . 10  |-  ( G  =  <. x ,  y
>.  ->  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  a  =  b ) )
2322exlimivv 1921 . . . . . . . . 9  |-  ( E. x E. y  G  =  <. x ,  y
>.  ->  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  a  =  b ) )
2423com12 30 . . . . . . . 8  |-  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  ( E. x E. y  G  = 
<. x ,  y >.  ->  a  =  b ) )
252, 24biimtrid 152 . . . . . . 7  |-  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  ( G  e.  ( _V  X.  _V )  ->  a  =  b ) )
2625con3d 632 . . . . . 6  |-  ( ( ( a  e.  dom  G  /\  b  e.  dom  G )  /\  Fun  ( G  \  { (/) } ) )  ->  ( -.  a  =  b  ->  -.  G  e.  ( _V 
X.  _V ) ) )
2726ex 115 . . . . 5  |-  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  ( Fun  ( G  \  { (/) } )  ->  ( -.  a  =  b  ->  -.  G  e.  ( _V 
X.  _V ) ) ) )
2827com23 78 . . . 4  |-  ( ( a  e.  dom  G  /\  b  e.  dom  G )  ->  ( -.  a  =  b  ->  ( Fun  ( G  \  { (/) } )  ->  -.  G  e.  ( _V  X.  _V ) ) ) )
2928rexlimivv 2630 . . 3  |-  ( E. a  e.  dom  G E. b  e.  dom  G  -.  a  =  b  ->  ( Fun  ( G  \  { (/) } )  ->  -.  G  e.  ( _V  X.  _V )
) )
301, 29syl 14 . 2  |-  ( 2o  ~<_  dom  G  ->  ( Fun  ( G  \  { (/)
} )  ->  -.  G  e.  ( _V  X.  _V ) ) )
3130impcom 125 1  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   E.wrex 2486   _Vcvv 2773    \ cdif 3167   (/)c0 3464   {csn 3638   <.cop 3641   class class class wbr 4051    X. cxp 4681   dom cdm 4683   Fun wfun 5274   2oc2o 6509    ~<_ cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fv 5288  df-1o 6515  df-2o 6516  df-dom 6842
This theorem is referenced by:  fundm2domnop  11013  fun2dmnop0  11014  funvtxdm2domval  15703  funiedgdm2domval  15704
  Copyright terms: Public domain W3C validator