ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordfr Unicode version

Theorem ordfr 4667
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr  |-  ( Ord 
A  ->  _E  Fr  A )

Proof of Theorem ordfr
StepHypRef Expression
1 zfregfr 4666 . 2  |-  _E  Fr  A
21a1i 9 1  |-  ( Ord 
A  ->  _E  Fr  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    _E cep 4378    Fr wfr 4419   Ord word 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-eprel 4380  df-frfor 4422  df-frind 4423
This theorem is referenced by:  ordwe  4668
  Copyright terms: Public domain W3C validator