ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordfr GIF version

Theorem ordfr 4353
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr (Ord 𝐴 → E Fr 𝐴)

Proof of Theorem ordfr
StepHypRef Expression
1 zfregfr 4352 . 2 E Fr 𝐴
21a1i 9 1 (Ord 𝐴 → E Fr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   E cep 4078   Fr wfr 4119  Ord word 4153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-setind 4316
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-eprel 4080  df-frfor 4122  df-frind 4123
This theorem is referenced by:  ordwe  4354
  Copyright terms: Public domain W3C validator