ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordfr GIF version

Theorem ordfr 4532
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr (Ord 𝐴 → E Fr 𝐴)

Proof of Theorem ordfr
StepHypRef Expression
1 zfregfr 4531 . 2 E Fr 𝐴
21a1i 9 1 (Ord 𝐴 → E Fr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   E cep 4246   Fr wfr 4287  Ord word 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-eprel 4248  df-frfor 4290  df-frind 4291
This theorem is referenced by:  ordwe  4533
  Copyright terms: Public domain W3C validator