Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordfr | GIF version |
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
ordfr | ⊢ (Ord 𝐴 → E Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfregfr 4531 | . 2 ⊢ E Fr 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → E Fr 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 E cep 4246 Fr wfr 4287 Ord word 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-eprel 4248 df-frfor 4290 df-frind 4291 |
This theorem is referenced by: ordwe 4533 |
Copyright terms: Public domain | W3C validator |