ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disjl Unicode version

Theorem xp01disjl 6520
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 6518 . . 3  |-  1o  =/=  (/)
21necomi 2461 . 2  |-  (/)  =/=  1o
3 disjsn2 3696 . 2  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
4 xpdisj1 5107 . 2  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  C ) )  =  (/) )
52, 3, 4mp2b 8 1  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    =/= wne 2376    i^i cin 3165   (/)c0 3460   {csn 3633    X. cxp 4673   1oc1o 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-suc 4418  df-xp 4681  df-rel 4682  df-1o 6502
This theorem is referenced by:  djucomen  7328  djuassen  7329  xpdjuen  7330
  Copyright terms: Public domain W3C validator