ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disjl Unicode version

Theorem xp01disjl 6489
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 6487 . . 3  |-  1o  =/=  (/)
21necomi 2449 . 2  |-  (/)  =/=  1o
3 disjsn2 3682 . 2  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
4 xpdisj1 5091 . 2  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  C ) )  =  (/) )
52, 3, 4mp2b 8 1  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    =/= wne 2364    i^i cin 3153   (/)c0 3447   {csn 3619    X. cxp 4658   1oc1o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-suc 4403  df-xp 4666  df-rel 4667  df-1o 6471
This theorem is referenced by:  djucomen  7278  djuassen  7279  xpdjuen  7280
  Copyright terms: Public domain W3C validator