ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disjl Unicode version

Theorem xp01disjl 6378
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 6376 . . 3  |-  1o  =/=  (/)
21necomi 2412 . 2  |-  (/)  =/=  1o
3 disjsn2 3622 . 2  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
4 xpdisj1 5009 . 2  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  C ) )  =  (/) )
52, 3, 4mp2b 8 1  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1335    =/= wne 2327    i^i cin 3101   (/)c0 3394   {csn 3560    X. cxp 4583   1oc1o 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-opab 4026  df-suc 4331  df-xp 4591  df-rel 4592  df-1o 6360
This theorem is referenced by:  djucomen  7145  djuassen  7146  xpdjuen  7147
  Copyright terms: Public domain W3C validator