| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp01disjl | Unicode version | ||
| Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| xp01disjl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6578 |
. . 3
| |
| 2 | 1 | necomi 2485 |
. 2
|
| 3 | disjsn2 3729 |
. 2
| |
| 4 | xpdisj1 5153 |
. 2
| |
| 5 | 2, 3, 4 | mp2b 8 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-suc 4462 df-xp 4725 df-rel 4726 df-1o 6562 |
| This theorem is referenced by: djucomen 7398 djuassen 7399 xpdjuen 7400 |
| Copyright terms: Public domain | W3C validator |