ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disjl Unicode version

Theorem xp01disjl 6580
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 6578 . . 3  |-  1o  =/=  (/)
21necomi 2485 . 2  |-  (/)  =/=  1o
3 disjsn2 3729 . 2  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
4 xpdisj1 5153 . 2  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  C ) )  =  (/) )
52, 3, 4mp2b 8 1  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  C ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    =/= wne 2400    i^i cin 3196   (/)c0 3491   {csn 3666    X. cxp 4717   1oc1o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-suc 4462  df-xp 4725  df-rel 4726  df-1o 6562
This theorem is referenced by:  djucomen  7398  djuassen  7399  xpdjuen  7400
  Copyright terms: Public domain W3C validator