ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archnqq Unicode version

Theorem archnqq 7565
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
archnqq  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
Distinct variable group:    x, A

Proof of Theorem archnqq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7526 . 2  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 1pi 7463 . . . . . . 7  |-  1o  e.  N.
3 addclpi 7475 . . . . . . 7  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
42, 3mpan2 425 . . . . . 6  |-  ( z  e.  N.  ->  (
z  +N  1o )  e.  N. )
54adantr 276 . . . . 5  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +N  1o )  e.  N. )
65adantr 276 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  (
z  +N  1o )  e.  N. )
7 pinn 7457 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  z  e.  om )
8 1onn 6629 . . . . . . . . . . . . . 14  |-  1o  e.  om
9 nnacl 6589 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  1o  e.  om )  -> 
( z  +o  1o )  e.  om )
107, 8, 9sylancl 413 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  (
z  +o  1o )  e.  om )
1110adantr 276 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +o  1o )  e.  om )
12 nnm1 6634 . . . . . . . . . . . 12  |-  ( ( z  +o  1o )  e.  om  ->  (
( z  +o  1o )  .o  1o )  =  ( z  +o  1o ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +o  1o )  .o  1o )  =  ( z  +o  1o ) )
14 elni2 7462 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  <->  ( w  e.  om  /\  (/)  e.  w
) )
15 nnord 4678 . . . . . . . . . . . . . . 15  |-  ( w  e.  om  ->  Ord  w )
16 ordgt0ge1 6544 . . . . . . . . . . . . . . . 16  |-  ( Ord  w  ->  ( (/)  e.  w  <->  1o  C_  w ) )
1716biimpa 296 . . . . . . . . . . . . . . 15  |-  ( ( Ord  w  /\  (/)  e.  w
)  ->  1o  C_  w
)
1815, 17sylan 283 . . . . . . . . . . . . . 14  |-  ( ( w  e.  om  /\  (/) 
e.  w )  ->  1o  C_  w )
1914, 18sylbi 121 . . . . . . . . . . . . 13  |-  ( w  e.  N.  ->  1o  C_  w )
2019adantl 277 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  1o  C_  w )
21 pinn 7457 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  ->  w  e.  om )
2221adantl 277 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  w  e.  om )
23 nnaword1 6622 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  1o  e.  om )  -> 
z  C_  ( z  +o  1o ) )
247, 8, 23sylancl 413 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  z  C_  ( z  +o  1o ) )
25 elni2 7462 . . . . . . . . . . . . . . . 16  |-  ( z  e.  N.  <->  ( z  e.  om  /\  (/)  e.  z ) )
2625simprbi 275 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  (/)  e.  z )
2724, 26sseldd 3202 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (/)  e.  ( z  +o  1o ) )
2827adantr 276 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  -> 
(/)  e.  ( z  +o  1o ) )
29 nnmword 6627 . . . . . . . . . . . . . 14  |-  ( ( ( 1o  e.  om  /\  w  e.  om  /\  ( z  +o  1o )  e.  om )  /\  (/)  e.  ( z  +o  1o ) )  ->  ( 1o  C_  w 
<->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) ) )
308, 29mp3anl1 1344 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  om  /\  ( z  +o  1o )  e.  om )  /\  (/)  e.  ( z  +o  1o ) )  ->  ( 1o  C_  w 
<->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) ) )
3122, 11, 28, 30syl21anc 1249 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( 1o  C_  w  <->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w
) ) )
3220, 31mpbid 147 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) )
3313, 32eqsstrrd 3238 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +o  1o )  C_  ( ( z  +o  1o )  .o  w ) )
34 nna0 6583 . . . . . . . . . . . . 13  |-  ( z  e.  om  ->  (
z  +o  (/) )  =  z )
35 0lt1o 6549 . . . . . . . . . . . . . 14  |-  (/)  e.  1o
36 nnaordi 6617 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  om  /\  z  e.  om )  ->  ( (/)  e.  1o  ->  ( z  +o  (/) )  e.  ( z  +o  1o ) ) )
378, 36mpan 424 . . . . . . . . . . . . . 14  |-  ( z  e.  om  ->  ( (/) 
e.  1o  ->  ( z  +o  (/) )  e.  ( z  +o  1o ) ) )
3835, 37mpi 15 . . . . . . . . . . . . 13  |-  ( z  e.  om  ->  (
z  +o  (/) )  e.  ( z  +o  1o ) )
3934, 38eqeltrrd 2285 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  z  e.  ( z  +o  1o ) )
407, 39syl 14 . . . . . . . . . . 11  |-  ( z  e.  N.  ->  z  e.  ( z  +o  1o ) )
4140adantr 276 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  e.  ( z  +o  1o ) )
4233, 41sseldd 3202 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  e.  ( ( z  +o  1o )  .o  w ) )
43 mulclpi 7476 . . . . . . . . . . . 12  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  e. 
N. )
444, 43sylan 283 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  e.  N. )
45 ltpiord 7467 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  ( ( z  +N  1o )  .N  w
)  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +N  1o )  .N  w
) ) )
4644, 45syldan 282 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +N  1o )  .N  w
) ) )
47 mulpiord 7465 . . . . . . . . . . . . 13  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  =  ( ( z  +N  1o )  .o  w
) )
484, 47sylan 283 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( ( z  +N  1o )  .o  w ) )
49 addpiord 7464 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  =  ( z  +o  1o ) )
502, 49mpan2 425 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
z  +N  1o )  =  ( z  +o  1o ) )
5150adantr 276 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +N  1o )  =  ( z  +o  1o ) )
5251oveq1d 5982 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .o  w
)  =  ( ( z  +o  1o )  .o  w ) )
5348, 52eqtrd 2240 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( ( z  +o  1o )  .o  w ) )
5453eleq2d 2277 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  ( ( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +o  1o )  .o  w
) ) )
5546, 54bitrd 188 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +o  1o )  .o  w
) ) )
5642, 55mpbird 167 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  <N  ( (
z  +N  1o )  .N  w ) )
57 mulcompig 7479 . . . . . . . . . 10  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  =  ( w  .N  (
z  +N  1o ) ) )
584, 57sylan 283 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( w  .N  ( z  +N  1o ) ) )
5958breq2d 4071 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  <N  ( w  .N  ( z  +N  1o ) ) ) )
6056, 59mpbid 147 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  <N  ( w  .N  ( z  +N  1o ) ) )
615, 2jctir 313 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  e.  N.  /\  1o  e.  N. )
)
62 ordpipqqs 7522 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( ( z  +N  1o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( w  .N  (
z  +N  1o ) ) ) )
6361, 62mpdan 421 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( w  .N  (
z  +N  1o ) ) ) )
64 mulidpi 7466 . . . . . . . . . 10  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
6564adantr 276 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  1o )  =  z )
6665breq1d 4069 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  .N  1o )  <N  (
w  .N  ( z  +N  1o ) )  <-> 
z  <N  ( w  .N  ( z  +N  1o ) ) ) )
6763, 66bitrd 188 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <->  z 
<N  ( w  .N  (
z  +N  1o ) ) ) )
6860, 67mpbird 167 . . . . . 6  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ]  ~Q  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
6968adantr 276 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  [ <. z ,  w >. ]  ~Q  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
70 breq1 4062 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ]  ~Q  ->  ( A  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  [
<. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  ) )
7170adantl 277 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  [
<. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  ) )
7269, 71mpbird 167 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  A  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
73 opeq1 3833 . . . . . . 7  |-  ( x  =  ( z  +N  1o )  ->  <. x ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
7473eceq1d 6679 . . . . . 6  |-  ( x  =  ( z  +N  1o )  ->  [ <. x ,  1o >. ]  ~Q  =  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
7574breq2d 4071 . . . . 5  |-  ( x  =  ( z  +N  1o )  ->  ( A  <Q  [ <. x ,  1o >. ]  ~Q  <->  A  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  ) )
7675rspcev 2884 . . . 4  |-  ( ( ( z  +N  1o )  e.  N.  /\  A  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
776, 72, 76syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
7877exlimivv 1921 . 2  |-  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
791, 78syl 14 1  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487    C_ wss 3174   (/)c0 3468   <.cop 3646   class class class wbr 4059   Ord word 4427   omcom 4656  (class class class)co 5967   1oc1o 6518    +o coa 6522    .o comu 6523   [cec 6641   N.cnpi 7420    +N cpli 7421    .N cmi 7422    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-enq 7495  df-nqqs 7496  df-ltnqqs 7501
This theorem is referenced by:  prarloclemarch  7566  nqprm  7690  archpr  7791  archrecnq  7811
  Copyright terms: Public domain W3C validator