ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archnqq Unicode version

Theorem archnqq 7484
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
archnqq  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
Distinct variable group:    x, A

Proof of Theorem archnqq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7445 . 2  |-  ( A  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  ) )
2 1pi 7382 . . . . . . 7  |-  1o  e.  N.
3 addclpi 7394 . . . . . . 7  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
42, 3mpan2 425 . . . . . 6  |-  ( z  e.  N.  ->  (
z  +N  1o )  e.  N. )
54adantr 276 . . . . 5  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +N  1o )  e.  N. )
65adantr 276 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  (
z  +N  1o )  e.  N. )
7 pinn 7376 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  z  e.  om )
8 1onn 6578 . . . . . . . . . . . . . 14  |-  1o  e.  om
9 nnacl 6538 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  /\  1o  e.  om )  -> 
( z  +o  1o )  e.  om )
107, 8, 9sylancl 413 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  (
z  +o  1o )  e.  om )
1110adantr 276 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +o  1o )  e.  om )
12 nnm1 6583 . . . . . . . . . . . 12  |-  ( ( z  +o  1o )  e.  om  ->  (
( z  +o  1o )  .o  1o )  =  ( z  +o  1o ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +o  1o )  .o  1o )  =  ( z  +o  1o ) )
14 elni2 7381 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  <->  ( w  e.  om  /\  (/)  e.  w
) )
15 nnord 4648 . . . . . . . . . . . . . . 15  |-  ( w  e.  om  ->  Ord  w )
16 ordgt0ge1 6493 . . . . . . . . . . . . . . . 16  |-  ( Ord  w  ->  ( (/)  e.  w  <->  1o  C_  w ) )
1716biimpa 296 . . . . . . . . . . . . . . 15  |-  ( ( Ord  w  /\  (/)  e.  w
)  ->  1o  C_  w
)
1815, 17sylan 283 . . . . . . . . . . . . . 14  |-  ( ( w  e.  om  /\  (/) 
e.  w )  ->  1o  C_  w )
1914, 18sylbi 121 . . . . . . . . . . . . 13  |-  ( w  e.  N.  ->  1o  C_  w )
2019adantl 277 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  1o  C_  w )
21 pinn 7376 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  ->  w  e.  om )
2221adantl 277 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  w  e.  om )
23 nnaword1 6571 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  1o  e.  om )  -> 
z  C_  ( z  +o  1o ) )
247, 8, 23sylancl 413 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  z  C_  ( z  +o  1o ) )
25 elni2 7381 . . . . . . . . . . . . . . . 16  |-  ( z  e.  N.  <->  ( z  e.  om  /\  (/)  e.  z ) )
2625simprbi 275 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  (/)  e.  z )
2724, 26sseldd 3184 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (/)  e.  ( z  +o  1o ) )
2827adantr 276 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  -> 
(/)  e.  ( z  +o  1o ) )
29 nnmword 6576 . . . . . . . . . . . . . 14  |-  ( ( ( 1o  e.  om  /\  w  e.  om  /\  ( z  +o  1o )  e.  om )  /\  (/)  e.  ( z  +o  1o ) )  ->  ( 1o  C_  w 
<->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) ) )
308, 29mp3anl1 1342 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  om  /\  ( z  +o  1o )  e.  om )  /\  (/)  e.  ( z  +o  1o ) )  ->  ( 1o  C_  w 
<->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) ) )
3122, 11, 28, 30syl21anc 1248 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( 1o  C_  w  <->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w
) ) )
3220, 31mpbid 147 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +o  1o )  .o  1o )  C_  ( ( z  +o  1o )  .o  w ) )
3313, 32eqsstrrd 3220 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +o  1o )  C_  ( ( z  +o  1o )  .o  w ) )
34 nna0 6532 . . . . . . . . . . . . 13  |-  ( z  e.  om  ->  (
z  +o  (/) )  =  z )
35 0lt1o 6498 . . . . . . . . . . . . . 14  |-  (/)  e.  1o
36 nnaordi 6566 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  om  /\  z  e.  om )  ->  ( (/)  e.  1o  ->  ( z  +o  (/) )  e.  ( z  +o  1o ) ) )
378, 36mpan 424 . . . . . . . . . . . . . 14  |-  ( z  e.  om  ->  ( (/) 
e.  1o  ->  ( z  +o  (/) )  e.  ( z  +o  1o ) ) )
3835, 37mpi 15 . . . . . . . . . . . . 13  |-  ( z  e.  om  ->  (
z  +o  (/) )  e.  ( z  +o  1o ) )
3934, 38eqeltrrd 2274 . . . . . . . . . . . 12  |-  ( z  e.  om  ->  z  e.  ( z  +o  1o ) )
407, 39syl 14 . . . . . . . . . . 11  |-  ( z  e.  N.  ->  z  e.  ( z  +o  1o ) )
4140adantr 276 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  e.  ( z  +o  1o ) )
4233, 41sseldd 3184 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  e.  ( ( z  +o  1o )  .o  w ) )
43 mulclpi 7395 . . . . . . . . . . . 12  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  e. 
N. )
444, 43sylan 283 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  e.  N. )
45 ltpiord 7386 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  ( ( z  +N  1o )  .N  w
)  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +N  1o )  .N  w
) ) )
4644, 45syldan 282 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +N  1o )  .N  w
) ) )
47 mulpiord 7384 . . . . . . . . . . . . 13  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  =  ( ( z  +N  1o )  .o  w
) )
484, 47sylan 283 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( ( z  +N  1o )  .o  w ) )
49 addpiord 7383 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  =  ( z  +o  1o ) )
502, 49mpan2 425 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
z  +N  1o )  =  ( z  +o  1o ) )
5150adantr 276 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  +N  1o )  =  ( z  +o  1o ) )
5251oveq1d 5937 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .o  w
)  =  ( ( z  +o  1o )  .o  w ) )
5348, 52eqtrd 2229 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( ( z  +o  1o )  .o  w ) )
5453eleq2d 2266 . . . . . . . . . 10  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  e.  ( ( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +o  1o )  .o  w
) ) )
5546, 54bitrd 188 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  e.  ( ( z  +o  1o )  .o  w
) ) )
5642, 55mpbird 167 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  <N  ( (
z  +N  1o )  .N  w ) )
57 mulcompig 7398 . . . . . . . . . 10  |-  ( ( ( z  +N  1o )  e.  N.  /\  w  e.  N. )  ->  (
( z  +N  1o )  .N  w )  =  ( w  .N  (
z  +N  1o ) ) )
584, 57sylan 283 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  .N  w
)  =  ( w  .N  ( z  +N  1o ) ) )
5958breq2d 4045 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  <N  (
( z  +N  1o )  .N  w )  <->  z  <N  ( w  .N  ( z  +N  1o ) ) ) )
6056, 59mpbid 147 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  z  <N  ( w  .N  ( z  +N  1o ) ) )
615, 2jctir 313 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  +N  1o )  e.  N.  /\  1o  e.  N. )
)
62 ordpipqqs 7441 . . . . . . . . 9  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( ( z  +N  1o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( w  .N  (
z  +N  1o ) ) ) )
6361, 62mpdan 421 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( w  .N  (
z  +N  1o ) ) ) )
64 mulidpi 7385 . . . . . . . . . 10  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
6564adantr 276 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( z  .N  1o )  =  z )
6665breq1d 4043 . . . . . . . 8  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( ( z  .N  1o )  <N  (
w  .N  ( z  +N  1o ) )  <-> 
z  <N  ( w  .N  ( z  +N  1o ) ) ) )
6763, 66bitrd 188 . . . . . . 7  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <->  z 
<N  ( w  .N  (
z  +N  1o ) ) ) )
6860, 67mpbird 167 . . . . . 6  |-  ( ( z  e.  N.  /\  w  e.  N. )  ->  [ <. z ,  w >. ]  ~Q  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
6968adantr 276 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  [ <. z ,  w >. ]  ~Q  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
70 breq1 4036 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ]  ~Q  ->  ( A  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  [
<. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  ) )
7170adantl 277 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  <->  [
<. z ,  w >. ]  ~Q  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  ) )
7269, 71mpbird 167 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  A  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
73 opeq1 3808 . . . . . . 7  |-  ( x  =  ( z  +N  1o )  ->  <. x ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
7473eceq1d 6628 . . . . . 6  |-  ( x  =  ( z  +N  1o )  ->  [ <. x ,  1o >. ]  ~Q  =  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
7574breq2d 4045 . . . . 5  |-  ( x  =  ( z  +N  1o )  ->  ( A  <Q  [ <. x ,  1o >. ]  ~Q  <->  A  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  ) )
7675rspcev 2868 . . . 4  |-  ( ( ( z  +N  1o )  e.  N.  /\  A  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
776, 72, 76syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
7877exlimivv 1911 . 2  |-  ( E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ]  ~Q  )  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
791, 78syl 14 1  |-  ( A  e.  Q.  ->  E. x  e.  N.  A  <Q  [ <. x ,  1o >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476    C_ wss 3157   (/)c0 3450   <.cop 3625   class class class wbr 4033   Ord word 4397   omcom 4626  (class class class)co 5922   1oc1o 6467    +o coa 6471    .o comu 6472   [cec 6590   N.cnpi 7339    +N cpli 7340    .N cmi 7341    <N clti 7342    ~Q ceq 7346   Q.cnq 7347    <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-enq 7414  df-nqqs 7415  df-ltnqqs 7420
This theorem is referenced by:  prarloclemarch  7485  nqprm  7609  archpr  7710  archrecnq  7730
  Copyright terms: Public domain W3C validator