| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordgt0ge1 | GIF version | ||
| Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| ordgt0ge1 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0elon 4427 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ordelsuc 4541 | . . 3 ⊢ ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | 
| 4 | df-1o 6474 | . . 3 ⊢ 1o = suc ∅ | |
| 5 | 4 | sseq1i 3209 | . 2 ⊢ (1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴) | 
| 6 | 3, 5 | bitr4di 198 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 Ord word 4397 Oncon0 4398 suc csuc 4400 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: ordge1n0im 6494 archnqq 7484 | 
| Copyright terms: Public domain | W3C validator |