ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordgt0ge1 GIF version

Theorem ordgt0ge1 6544
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordgt0ge1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))

Proof of Theorem ordgt0ge1
StepHypRef Expression
1 0elon 4457 . . 3 ∅ ∈ On
2 ordelsuc 4571 . . 3 ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
31, 2mpan 424 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
4 df-1o 6525 . . 3 1o = suc ∅
54sseq1i 3227 . 2 (1o𝐴 ↔ suc ∅ ⊆ 𝐴)
63, 5bitr4di 198 1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2178  wss 3174  c0 3468  Ord word 4427  Oncon0 4428  suc csuc 4430  1oc1o 6518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-nul 4186
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-1o 6525
This theorem is referenced by:  ordge1n0im  6545  archnqq  7565
  Copyright terms: Public domain W3C validator