| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordgt0ge1 | GIF version | ||
| Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordgt0ge1 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 4439 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ordelsuc 4553 | . . 3 ⊢ ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴)) |
| 4 | df-1o 6502 | . . 3 ⊢ 1o = suc ∅ | |
| 5 | 4 | sseq1i 3219 | . 2 ⊢ (1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴) |
| 6 | 3, 5 | bitr4di 198 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2176 ⊆ wss 3166 ∅c0 3460 Ord word 4409 Oncon0 4410 suc csuc 4412 1oc1o 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 |
| This theorem is referenced by: ordge1n0im 6522 archnqq 7530 |
| Copyright terms: Public domain | W3C validator |