ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordgt0ge1 GIF version

Theorem ordgt0ge1 6493
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordgt0ge1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))

Proof of Theorem ordgt0ge1
StepHypRef Expression
1 0elon 4427 . . 3 ∅ ∈ On
2 ordelsuc 4541 . . 3 ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
31, 2mpan 424 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
4 df-1o 6474 . . 3 1o = suc ∅
54sseq1i 3209 . 2 (1o𝐴 ↔ suc ∅ ⊆ 𝐴)
63, 5bitr4di 198 1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167  wss 3157  c0 3450  Ord word 4397  Oncon0 4398  suc csuc 4400  1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474
This theorem is referenced by:  ordge1n0im  6494  archnqq  7484
  Copyright terms: Public domain W3C validator