ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson GIF version

Theorem ordsson 4581
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson (Ord 𝐴𝐴 ⊆ On)

Proof of Theorem ordsson
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordelon 4471 . . 3 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
21ex 115 . 2 (Ord 𝐴 → (𝑥𝐴𝑥 ∈ On))
32ssrdv 3230 1 (Ord 𝐴𝐴 ⊆ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wss 3197  Ord word 4450  Oncon0 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456
This theorem is referenced by:  onss  4582  orduni  4584  iordsmo  6433  tfrlemi14d  6469  tfr1onlemssrecs  6475  tfri1dALT  6487  tfrcllemssrecs  6488  ordiso2  7190
  Copyright terms: Public domain W3C validator