![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordsson | GIF version |
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelon 4395 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
2 | 1 | ex 115 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
3 | 2 | ssrdv 3173 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 ⊆ wss 3141 Ord word 4374 Oncon0 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-in 3147 df-ss 3154 df-uni 3822 df-tr 4114 df-iord 4378 df-on 4380 |
This theorem is referenced by: onss 4504 orduni 4506 iordsmo 6312 tfrlemi14d 6348 tfr1onlemssrecs 6354 tfri1dALT 6366 tfrcllemssrecs 6367 ordiso2 7048 |
Copyright terms: Public domain | W3C validator |