| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordsson | GIF version | ||
| Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) | 
| Ref | Expression | 
|---|---|
| ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordelon 4418 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 2 | 1 | ex 115 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) | 
| 3 | 2 | ssrdv 3189 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 Ord word 4397 Oncon0 4398 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: onss 4529 orduni 4531 iordsmo 6355 tfrlemi14d 6391 tfr1onlemssrecs 6397 tfri1dALT 6409 tfrcllemssrecs 6410 ordiso2 7101 | 
| Copyright terms: Public domain | W3C validator |