ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson GIF version

Theorem ordsson 4528
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson (Ord 𝐴𝐴 ⊆ On)

Proof of Theorem ordsson
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordelon 4418 . . 3 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
21ex 115 . 2 (Ord 𝐴 → (𝑥𝐴𝑥 ∈ On))
32ssrdv 3189 1 (Ord 𝐴𝐴 ⊆ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wss 3157  Ord word 4397  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  onss  4529  orduni  4531  iordsmo  6355  tfrlemi14d  6391  tfr1onlemssrecs  6397  tfri1dALT  6409  tfrcllemssrecs  6410  ordiso2  7101
  Copyright terms: Public domain W3C validator