| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsson | GIF version | ||
| Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| ordsson | ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelon 4435 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 2 | 1 | ex 115 | . 2 ⊢ (Ord 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
| 3 | 2 | ssrdv 3201 | 1 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3168 Ord word 4414 Oncon0 4415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 |
| This theorem is referenced by: onss 4546 orduni 4548 iordsmo 6393 tfrlemi14d 6429 tfr1onlemssrecs 6435 tfri1dALT 6447 tfrcllemssrecs 6448 ordiso2 7149 |
| Copyright terms: Public domain | W3C validator |