ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelon Unicode version

Theorem ordelon 4414
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
ordelon  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )

Proof of Theorem ordelon
StepHypRef Expression
1 ordelord 4412 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
2 elong 4404 . . 3  |-  ( B  e.  A  ->  ( B  e.  On  <->  Ord  B ) )
32adantl 277 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  ( B  e.  On  <->  Ord  B ) )
41, 3mpbird 167 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  onelon  4415  ordsson  4524  ordpwsucss  4599  tfr1onlemsucfn  6393  tfr1onlemsucaccv  6394  tfr1onlembfn  6397  tfr1onlemubacc  6399  tfr1onlemaccex  6401  tfrcllemsucfn  6406  tfrcllemsucaccv  6407  tfrcllembfn  6410  tfrcllemubacc  6412  tfrcllemaccex  6414  tfrcl  6417
  Copyright terms: Public domain W3C validator