| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelon | Unicode version | ||
| Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 4472 |
. 2
| |
| 2 | elong 4464 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | 1, 3 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 |
| This theorem is referenced by: onelon 4475 ordsson 4584 ordpwsucss 4659 tfr1onlemsucfn 6486 tfr1onlemsucaccv 6487 tfr1onlembfn 6490 tfr1onlemubacc 6492 tfr1onlemaccex 6494 tfrcllemsucfn 6499 tfrcllemsucaccv 6500 tfrcllembfn 6503 tfrcllemubacc 6505 tfrcllemaccex 6507 tfrcl 6510 |
| Copyright terms: Public domain | W3C validator |