ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelon Unicode version

Theorem ordelon 4418
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
ordelon  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )

Proof of Theorem ordelon
StepHypRef Expression
1 ordelord 4416 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
2 elong 4408 . . 3  |-  ( B  e.  A  ->  ( B  e.  On  <->  Ord  B ) )
32adantl 277 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  ( B  e.  On  <->  Ord  B ) )
41, 3mpbird 167 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   Ord word 4397   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  onelon  4419  ordsson  4528  ordpwsucss  4603  tfr1onlemsucfn  6398  tfr1onlemsucaccv  6399  tfr1onlembfn  6402  tfr1onlemubacc  6404  tfr1onlemaccex  6406  tfrcllemsucfn  6411  tfrcllemsucaccv  6412  tfrcllembfn  6415  tfrcllemubacc  6417  tfrcllemaccex  6419  tfrcl  6422
  Copyright terms: Public domain W3C validator