| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelon | Unicode version | ||
| Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 4417 |
. 2
| |
| 2 | elong 4409 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | 1, 3 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 |
| This theorem is referenced by: onelon 4420 ordsson 4529 ordpwsucss 4604 tfr1onlemsucfn 6407 tfr1onlemsucaccv 6408 tfr1onlembfn 6411 tfr1onlemubacc 6413 tfr1onlemaccex 6415 tfrcllemsucfn 6420 tfrcllemsucaccv 6421 tfrcllembfn 6424 tfrcllemubacc 6426 tfrcllemaccex 6428 tfrcl 6431 |
| Copyright terms: Public domain | W3C validator |