| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version | ||
| Description: Alternate proof of tfri1d 6393 in terms of tfr1on 6408.
 
       Although this does show that the tfr1on 6408 proof is general enough to
       also prove tfri1d 6393, the tfri1d 6393 proof is simpler in places because it
       does not need to deal with   | 
| Ref | Expression | 
|---|---|
| tfri1dALT.1 | 
 | 
| tfri1dALT.2 | 
 | 
| Ref | Expression | 
|---|---|
| tfri1dALT | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tfrfun 6378 | 
. . . 4
 | |
| 2 | tfri1dALT.1 | 
. . . . 5
 | |
| 3 | 2 | funeqi 5279 | 
. . . 4
 | 
| 4 | 1, 3 | mpbir 146 | 
. . 3
 | 
| 5 | 4 | a1i 9 | 
. 2
 | 
| 6 | eqid 2196 | 
. . . . . 6
 | |
| 7 | 6 | tfrlem8 6376 | 
. . . . 5
 | 
| 8 | 2 | dmeqi 4867 | 
. . . . . 6
 | 
| 9 | ordeq 4407 | 
. . . . . 6
 | |
| 10 | 8, 9 | ax-mp 5 | 
. . . . 5
 | 
| 11 | 7, 10 | mpbir 146 | 
. . . 4
 | 
| 12 | ordsson 4528 | 
. . . 4
 | |
| 13 | 11, 12 | mp1i 10 | 
. . 3
 | 
| 14 | tfri1dALT.2 | 
. . . . . . . . . 10
 | |
| 15 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 16 | 15 | alimi 1469 | 
. . . . . . . . . 10
 | 
| 17 | 14, 16 | syl 14 | 
. . . . . . . . 9
 | 
| 18 | 17 | 19.21bi 1572 | 
. . . . . . . 8
 | 
| 19 | 18 | adantr 276 | 
. . . . . . 7
 | 
| 20 | ordon 4522 | 
. . . . . . . 8
 | |
| 21 | 20 | a1i 9 | 
. . . . . . 7
 | 
| 22 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 23 | 22 | alimi 1469 | 
. . . . . . . . . 10
 | 
| 24 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 25 | 24 | eleq1d 2265 | 
. . . . . . . . . . 11
 | 
| 26 | 25 | spv 1874 | 
. . . . . . . . . 10
 | 
| 27 | 14, 23, 26 | 3syl 17 | 
. . . . . . . . 9
 | 
| 28 | 27 | adantr 276 | 
. . . . . . . 8
 | 
| 29 | 28 | 3ad2ant1 1020 | 
. . . . . . 7
 | 
| 30 | onsuc 4537 | 
. . . . . . . . 9
 | |
| 31 | unon 4547 | 
. . . . . . . . 9
 | |
| 32 | 30, 31 | eleq2s 2291 | 
. . . . . . . 8
 | 
| 33 | 32 | adantl 277 | 
. . . . . . 7
 | 
| 34 | onsuc 4537 | 
. . . . . . . 8
 | |
| 35 | 34 | adantl 277 | 
. . . . . . 7
 | 
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6408 | 
. . . . . 6
 | 
| 37 | vex 2766 | 
. . . . . . 7
 | |
| 38 | 37 | sucid 4452 | 
. . . . . 6
 | 
| 39 | ssel2 3178 | 
. . . . . 6
 | |
| 40 | 36, 38, 39 | sylancl 413 | 
. . . . 5
 | 
| 41 | 40 | ex 115 | 
. . . 4
 | 
| 42 | 41 | ssrdv 3189 | 
. . 3
 | 
| 43 | 13, 42 | eqssd 3200 | 
. 2
 | 
| 44 | df-fn 5261 | 
. 2
 | |
| 45 | 5, 43, 44 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-recs 6363 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |