ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1dALT Unicode version

Theorem tfri1dALT 6437
Description: Alternate proof of tfri1d 6421 in terms of tfr1on 6436.

Although this does show that the tfr1on 6436 proof is general enough to also prove tfri1d 6421, the tfri1d 6421 proof is simpler in places because it does not need to deal with 
X being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

Hypotheses
Ref Expression
tfri1dALT.1  |-  F  = recs ( G )
tfri1dALT.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1dALT  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1dALT
Dummy variables  z  a  b  c  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6406 . . . 4  |-  Fun recs ( G )
2 tfri1dALT.1 . . . . 5  |-  F  = recs ( G )
32funeqi 5292 . . . 4  |-  ( Fun 
F  <->  Fun recs ( G ) )
41, 3mpbir 146 . . 3  |-  Fun  F
54a1i 9 . 2  |-  ( ph  ->  Fun  F )
6 eqid 2205 . . . . . 6  |-  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
76tfrlem8 6404 . . . . 5  |-  Ord  dom recs ( G )
82dmeqi 4879 . . . . . 6  |-  dom  F  =  dom recs ( G )
9 ordeq 4419 . . . . . 6  |-  ( dom 
F  =  dom recs ( G )  ->  ( Ord  dom  F  <->  Ord  dom recs ( G ) ) )
108, 9ax-mp 5 . . . . 5  |-  ( Ord 
dom  F  <->  Ord  dom recs ( G
) )
117, 10mpbir 146 . . . 4  |-  Ord  dom  F
12 ordsson 4540 . . . 4  |-  ( Ord 
dom  F  ->  dom  F  C_  On )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  dom  F  C_  On )
14 tfri1dALT.2 . . . . . . . . . 10  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
15 simpl 109 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  Fun  G )
1615alimi 1478 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x Fun  G
)
1714, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  A. x Fun  G
)
181719.21bi 1581 . . . . . . . 8  |-  ( ph  ->  Fun  G )
1918adantr 276 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Fun  G
)
20 ordon 4534 . . . . . . . 8  |-  Ord  On
2120a1i 9 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Ord  On )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  ( G `  x )  e.  _V )
2322alimi 1478 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x ( G `
 x )  e. 
_V )
24 fveq2 5576 . . . . . . . . . . . 12  |-  ( x  =  f  ->  ( G `  x )  =  ( G `  f ) )
2524eleq1d 2274 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( G `  x
)  e.  _V  <->  ( G `  f )  e.  _V ) )
2625spv 1883 . . . . . . . . . 10  |-  ( A. x ( G `  x )  e.  _V  ->  ( G `  f
)  e.  _V )
2714, 23, 263syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G `  f
)  e.  _V )
2827adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  On )  ->  ( G `
 f )  e. 
_V )
29283ad2ant1 1021 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  On  /\  f  Fn  y )  ->  ( G `  f )  e.  _V )
30 onsuc 4549 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
31 unon 4559 . . . . . . . . 9  |-  U. On  =  On
3230, 31eleq2s 2300 . . . . . . . 8  |-  ( y  e.  U. On  ->  suc  y  e.  On )
3332adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
34 onsuc 4549 . . . . . . . 8  |-  ( z  e.  On  ->  suc  z  e.  On )
3534adantl 277 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  e.  On )
362, 19, 21, 29, 33, 35tfr1on 6436 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  C_ 
dom  F )
37 vex 2775 . . . . . . 7  |-  z  e. 
_V
3837sucid 4464 . . . . . 6  |-  z  e. 
suc  z
39 ssel2 3188 . . . . . 6  |-  ( ( suc  z  C_  dom  F  /\  z  e.  suc  z )  ->  z  e.  dom  F )
4036, 38, 39sylancl 413 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
dom  F )
4140ex 115 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  dom  F
) )
4241ssrdv 3199 . . 3  |-  ( ph  ->  On  C_  dom  F )
4313, 42eqssd 3210 . 2  |-  ( ph  ->  dom  F  =  On )
44 df-fn 5274 . 2  |-  ( F  Fn  On  <->  ( Fun  F  /\  dom  F  =  On ) )
455, 43, 44sylanbrc 417 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772    C_ wss 3166   U.cuni 3850   Ord word 4409   Oncon0 4410   suc csuc 4412   dom cdm 4675    |` cres 4677   Fun wfun 5265    Fn wfn 5266   ` cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator