Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version |
Description: Alternate proof of tfri1d 6279 in terms of tfr1on 6294.
Although this does show that the tfr1on 6294 proof is general enough to also prove tfri1d 6279, the tfri1d 6279 proof is simpler in places because it does not need to deal with being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.) |
Ref | Expression |
---|---|
tfri1dALT.1 | recs |
tfri1dALT.2 |
Ref | Expression |
---|---|
tfri1dALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrfun 6264 | . . . 4 recs | |
2 | tfri1dALT.1 | . . . . 5 recs | |
3 | 2 | funeqi 5190 | . . . 4 recs |
4 | 1, 3 | mpbir 145 | . . 3 |
5 | 4 | a1i 9 | . 2 |
6 | eqid 2157 | . . . . . 6 | |
7 | 6 | tfrlem8 6262 | . . . . 5 recs |
8 | 2 | dmeqi 4786 | . . . . . 6 recs |
9 | ordeq 4332 | . . . . . 6 recs recs | |
10 | 8, 9 | ax-mp 5 | . . . . 5 recs |
11 | 7, 10 | mpbir 145 | . . . 4 |
12 | ordsson 4450 | . . . 4 | |
13 | 11, 12 | mp1i 10 | . . 3 |
14 | tfri1dALT.2 | . . . . . . . . . 10 | |
15 | simpl 108 | . . . . . . . . . . 11 | |
16 | 15 | alimi 1435 | . . . . . . . . . 10 |
17 | 14, 16 | syl 14 | . . . . . . . . 9 |
18 | 17 | 19.21bi 1538 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | ordon 4444 | . . . . . . . 8 | |
21 | 20 | a1i 9 | . . . . . . 7 |
22 | simpr 109 | . . . . . . . . . . 11 | |
23 | 22 | alimi 1435 | . . . . . . . . . 10 |
24 | fveq2 5467 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2226 | . . . . . . . . . . 11 |
26 | 25 | spv 1840 | . . . . . . . . . 10 |
27 | 14, 23, 26 | 3syl 17 | . . . . . . . . 9 |
28 | 27 | adantr 274 | . . . . . . . 8 |
29 | 28 | 3ad2ant1 1003 | . . . . . . 7 |
30 | suceloni 4459 | . . . . . . . . 9 | |
31 | unon 4469 | . . . . . . . . 9 | |
32 | 30, 31 | eleq2s 2252 | . . . . . . . 8 |
33 | 32 | adantl 275 | . . . . . . 7 |
34 | suceloni 4459 | . . . . . . . 8 | |
35 | 34 | adantl 275 | . . . . . . 7 |
36 | 2, 19, 21, 29, 33, 35 | tfr1on 6294 | . . . . . 6 |
37 | vex 2715 | . . . . . . 7 | |
38 | 37 | sucid 4377 | . . . . . 6 |
39 | ssel2 3123 | . . . . . 6 | |
40 | 36, 38, 39 | sylancl 410 | . . . . 5 |
41 | 40 | ex 114 | . . . 4 |
42 | 41 | ssrdv 3134 | . . 3 |
43 | 13, 42 | eqssd 3145 | . 2 |
44 | df-fn 5172 | . 2 | |
45 | 5, 43, 44 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wceq 1335 wcel 2128 cab 2143 wral 2435 wrex 2436 cvv 2712 wss 3102 cuni 3772 word 4322 con0 4323 csuc 4325 cdm 4585 cres 4587 wfun 5163 wfn 5164 cfv 5169 recscrecs 6248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-recs 6249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |