| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version | ||
| Description: Alternate proof of tfri1d 6479 in terms of tfr1on 6494.
Although this does show that the tfr1on 6494 proof is general enough to
also prove tfri1d 6479, the tfri1d 6479 proof is simpler in places because it
does not need to deal with |
| Ref | Expression |
|---|---|
| tfri1dALT.1 |
|
| tfri1dALT.2 |
|
| Ref | Expression |
|---|---|
| tfri1dALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrfun 6464 |
. . . 4
| |
| 2 | tfri1dALT.1 |
. . . . 5
| |
| 3 | 2 | funeqi 5338 |
. . . 4
|
| 4 | 1, 3 | mpbir 146 |
. . 3
|
| 5 | 4 | a1i 9 |
. 2
|
| 6 | eqid 2229 |
. . . . . 6
| |
| 7 | 6 | tfrlem8 6462 |
. . . . 5
|
| 8 | 2 | dmeqi 4923 |
. . . . . 6
|
| 9 | ordeq 4462 |
. . . . . 6
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
|
| 11 | 7, 10 | mpbir 146 |
. . . 4
|
| 12 | ordsson 4583 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | tfri1dALT.2 |
. . . . . . . . . 10
| |
| 15 | simpl 109 |
. . . . . . . . . . 11
| |
| 16 | 15 | alimi 1501 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | 19.21bi 1604 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | ordon 4577 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 22 | alimi 1501 |
. . . . . . . . . 10
|
| 24 | fveq2 5626 |
. . . . . . . . . . . 12
| |
| 25 | 24 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 26 | 25 | spv 1906 |
. . . . . . . . . 10
|
| 27 | 14, 23, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28 | 3ad2ant1 1042 |
. . . . . . 7
|
| 30 | onsuc 4592 |
. . . . . . . . 9
| |
| 31 | unon 4602 |
. . . . . . . . 9
| |
| 32 | 30, 31 | eleq2s 2324 |
. . . . . . . 8
|
| 33 | 32 | adantl 277 |
. . . . . . 7
|
| 34 | onsuc 4592 |
. . . . . . . 8
| |
| 35 | 34 | adantl 277 |
. . . . . . 7
|
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6494 |
. . . . . 6
|
| 37 | vex 2802 |
. . . . . . 7
| |
| 38 | 37 | sucid 4507 |
. . . . . 6
|
| 39 | ssel2 3219 |
. . . . . 6
| |
| 40 | 36, 38, 39 | sylancl 413 |
. . . . 5
|
| 41 | 40 | ex 115 |
. . . 4
|
| 42 | 41 | ssrdv 3230 |
. . 3
|
| 43 | 13, 42 | eqssd 3241 |
. 2
|
| 44 | df-fn 5320 |
. 2
| |
| 45 | 5, 43, 44 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-recs 6449 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |