Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version |
Description: Alternate proof of tfri1d 6303 in terms of tfr1on 6318.
Although this does show that the tfr1on 6318 proof is general enough to also prove tfri1d 6303, the tfri1d 6303 proof is simpler in places because it does not need to deal with being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.) |
Ref | Expression |
---|---|
tfri1dALT.1 | recs |
tfri1dALT.2 |
Ref | Expression |
---|---|
tfri1dALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrfun 6288 | . . . 4 recs | |
2 | tfri1dALT.1 | . . . . 5 recs | |
3 | 2 | funeqi 5209 | . . . 4 recs |
4 | 1, 3 | mpbir 145 | . . 3 |
5 | 4 | a1i 9 | . 2 |
6 | eqid 2165 | . . . . . 6 | |
7 | 6 | tfrlem8 6286 | . . . . 5 recs |
8 | 2 | dmeqi 4805 | . . . . . 6 recs |
9 | ordeq 4350 | . . . . . 6 recs recs | |
10 | 8, 9 | ax-mp 5 | . . . . 5 recs |
11 | 7, 10 | mpbir 145 | . . . 4 |
12 | ordsson 4469 | . . . 4 | |
13 | 11, 12 | mp1i 10 | . . 3 |
14 | tfri1dALT.2 | . . . . . . . . . 10 | |
15 | simpl 108 | . . . . . . . . . . 11 | |
16 | 15 | alimi 1443 | . . . . . . . . . 10 |
17 | 14, 16 | syl 14 | . . . . . . . . 9 |
18 | 17 | 19.21bi 1546 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | ordon 4463 | . . . . . . . 8 | |
21 | 20 | a1i 9 | . . . . . . 7 |
22 | simpr 109 | . . . . . . . . . . 11 | |
23 | 22 | alimi 1443 | . . . . . . . . . 10 |
24 | fveq2 5486 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2235 | . . . . . . . . . . 11 |
26 | 25 | spv 1848 | . . . . . . . . . 10 |
27 | 14, 23, 26 | 3syl 17 | . . . . . . . . 9 |
28 | 27 | adantr 274 | . . . . . . . 8 |
29 | 28 | 3ad2ant1 1008 | . . . . . . 7 |
30 | suceloni 4478 | . . . . . . . . 9 | |
31 | unon 4488 | . . . . . . . . 9 | |
32 | 30, 31 | eleq2s 2261 | . . . . . . . 8 |
33 | 32 | adantl 275 | . . . . . . 7 |
34 | suceloni 4478 | . . . . . . . 8 | |
35 | 34 | adantl 275 | . . . . . . 7 |
36 | 2, 19, 21, 29, 33, 35 | tfr1on 6318 | . . . . . 6 |
37 | vex 2729 | . . . . . . 7 | |
38 | 37 | sucid 4395 | . . . . . 6 |
39 | ssel2 3137 | . . . . . 6 | |
40 | 36, 38, 39 | sylancl 410 | . . . . 5 |
41 | 40 | ex 114 | . . . 4 |
42 | 41 | ssrdv 3148 | . . 3 |
43 | 13, 42 | eqssd 3159 | . 2 |
44 | df-fn 5191 | . 2 | |
45 | 5, 43, 44 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 wss 3116 cuni 3789 word 4340 con0 4341 csuc 4343 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-recs 6273 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |