Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version |
Description: Alternate proof of tfri1d 6314 in terms of tfr1on 6329.
Although this does show that the tfr1on 6329 proof is general enough to also prove tfri1d 6314, the tfri1d 6314 proof is simpler in places because it does not need to deal with being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.) |
Ref | Expression |
---|---|
tfri1dALT.1 | recs |
tfri1dALT.2 |
Ref | Expression |
---|---|
tfri1dALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrfun 6299 | . . . 4 recs | |
2 | tfri1dALT.1 | . . . . 5 recs | |
3 | 2 | funeqi 5219 | . . . 4 recs |
4 | 1, 3 | mpbir 145 | . . 3 |
5 | 4 | a1i 9 | . 2 |
6 | eqid 2170 | . . . . . 6 | |
7 | 6 | tfrlem8 6297 | . . . . 5 recs |
8 | 2 | dmeqi 4812 | . . . . . 6 recs |
9 | ordeq 4357 | . . . . . 6 recs recs | |
10 | 8, 9 | ax-mp 5 | . . . . 5 recs |
11 | 7, 10 | mpbir 145 | . . . 4 |
12 | ordsson 4476 | . . . 4 | |
13 | 11, 12 | mp1i 10 | . . 3 |
14 | tfri1dALT.2 | . . . . . . . . . 10 | |
15 | simpl 108 | . . . . . . . . . . 11 | |
16 | 15 | alimi 1448 | . . . . . . . . . 10 |
17 | 14, 16 | syl 14 | . . . . . . . . 9 |
18 | 17 | 19.21bi 1551 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | ordon 4470 | . . . . . . . 8 | |
21 | 20 | a1i 9 | . . . . . . 7 |
22 | simpr 109 | . . . . . . . . . . 11 | |
23 | 22 | alimi 1448 | . . . . . . . . . 10 |
24 | fveq2 5496 | . . . . . . . . . . . 12 | |
25 | 24 | eleq1d 2239 | . . . . . . . . . . 11 |
26 | 25 | spv 1853 | . . . . . . . . . 10 |
27 | 14, 23, 26 | 3syl 17 | . . . . . . . . 9 |
28 | 27 | adantr 274 | . . . . . . . 8 |
29 | 28 | 3ad2ant1 1013 | . . . . . . 7 |
30 | suceloni 4485 | . . . . . . . . 9 | |
31 | unon 4495 | . . . . . . . . 9 | |
32 | 30, 31 | eleq2s 2265 | . . . . . . . 8 |
33 | 32 | adantl 275 | . . . . . . 7 |
34 | suceloni 4485 | . . . . . . . 8 | |
35 | 34 | adantl 275 | . . . . . . 7 |
36 | 2, 19, 21, 29, 33, 35 | tfr1on 6329 | . . . . . 6 |
37 | vex 2733 | . . . . . . 7 | |
38 | 37 | sucid 4402 | . . . . . 6 |
39 | ssel2 3142 | . . . . . 6 | |
40 | 36, 38, 39 | sylancl 411 | . . . . 5 |
41 | 40 | ex 114 | . . . 4 |
42 | 41 | ssrdv 3153 | . . 3 |
43 | 13, 42 | eqssd 3164 | . 2 |
44 | df-fn 5201 | . 2 | |
45 | 5, 43, 44 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 wss 3121 cuni 3796 word 4347 con0 4348 csuc 4350 cdm 4611 cres 4613 wfun 5192 wfn 5193 cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |