ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1dALT Unicode version

Theorem tfri1dALT 6460
Description: Alternate proof of tfri1d 6444 in terms of tfr1on 6459.

Although this does show that the tfr1on 6459 proof is general enough to also prove tfri1d 6444, the tfri1d 6444 proof is simpler in places because it does not need to deal with 
X being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

Hypotheses
Ref Expression
tfri1dALT.1  |-  F  = recs ( G )
tfri1dALT.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1dALT  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1dALT
Dummy variables  z  a  b  c  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6429 . . . 4  |-  Fun recs ( G )
2 tfri1dALT.1 . . . . 5  |-  F  = recs ( G )
32funeqi 5311 . . . 4  |-  ( Fun 
F  <->  Fun recs ( G ) )
41, 3mpbir 146 . . 3  |-  Fun  F
54a1i 9 . 2  |-  ( ph  ->  Fun  F )
6 eqid 2207 . . . . . 6  |-  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
76tfrlem8 6427 . . . . 5  |-  Ord  dom recs ( G )
82dmeqi 4898 . . . . . 6  |-  dom  F  =  dom recs ( G )
9 ordeq 4437 . . . . . 6  |-  ( dom 
F  =  dom recs ( G )  ->  ( Ord  dom  F  <->  Ord  dom recs ( G ) ) )
108, 9ax-mp 5 . . . . 5  |-  ( Ord 
dom  F  <->  Ord  dom recs ( G
) )
117, 10mpbir 146 . . . 4  |-  Ord  dom  F
12 ordsson 4558 . . . 4  |-  ( Ord 
dom  F  ->  dom  F  C_  On )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  dom  F  C_  On )
14 tfri1dALT.2 . . . . . . . . . 10  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
15 simpl 109 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  Fun  G )
1615alimi 1479 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x Fun  G
)
1714, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  A. x Fun  G
)
181719.21bi 1582 . . . . . . . 8  |-  ( ph  ->  Fun  G )
1918adantr 276 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Fun  G
)
20 ordon 4552 . . . . . . . 8  |-  Ord  On
2120a1i 9 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Ord  On )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  ( G `  x )  e.  _V )
2322alimi 1479 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x ( G `
 x )  e. 
_V )
24 fveq2 5599 . . . . . . . . . . . 12  |-  ( x  =  f  ->  ( G `  x )  =  ( G `  f ) )
2524eleq1d 2276 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( G `  x
)  e.  _V  <->  ( G `  f )  e.  _V ) )
2625spv 1884 . . . . . . . . . 10  |-  ( A. x ( G `  x )  e.  _V  ->  ( G `  f
)  e.  _V )
2714, 23, 263syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G `  f
)  e.  _V )
2827adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  On )  ->  ( G `
 f )  e. 
_V )
29283ad2ant1 1021 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  On  /\  f  Fn  y )  ->  ( G `  f )  e.  _V )
30 onsuc 4567 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
31 unon 4577 . . . . . . . . 9  |-  U. On  =  On
3230, 31eleq2s 2302 . . . . . . . 8  |-  ( y  e.  U. On  ->  suc  y  e.  On )
3332adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
34 onsuc 4567 . . . . . . . 8  |-  ( z  e.  On  ->  suc  z  e.  On )
3534adantl 277 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  e.  On )
362, 19, 21, 29, 33, 35tfr1on 6459 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  C_ 
dom  F )
37 vex 2779 . . . . . . 7  |-  z  e. 
_V
3837sucid 4482 . . . . . 6  |-  z  e. 
suc  z
39 ssel2 3196 . . . . . 6  |-  ( ( suc  z  C_  dom  F  /\  z  e.  suc  z )  ->  z  e.  dom  F )
4036, 38, 39sylancl 413 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
dom  F )
4140ex 115 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  dom  F
) )
4241ssrdv 3207 . . 3  |-  ( ph  ->  On  C_  dom  F )
4313, 42eqssd 3218 . 2  |-  ( ph  ->  dom  F  =  On )
44 df-fn 5293 . 2  |-  ( F  Fn  On  <->  ( Fun  F  /\  dom  F  =  On ) )
455, 43, 44sylanbrc 417 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776    C_ wss 3174   U.cuni 3864   Ord word 4427   Oncon0 4428   suc csuc 4430   dom cdm 4693    |` cres 4695   Fun wfun 5284    Fn wfn 5285   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator