ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1dALT Unicode version

Theorem tfri1dALT 6116
Description: Alternate proof of tfri1d 6100 in terms of tfr1on 6115.

Although this does show that the tfr1on 6115 proof is general enough to also prove tfri1d 6100, the tfri1d 6100 proof is simpler in places because it does not need to deal with 
X being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

Hypotheses
Ref Expression
tfri1dALT.1  |-  F  = recs ( G )
tfri1dALT.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1dALT  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1dALT
Dummy variables  z  a  b  c  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6085 . . . 4  |-  Fun recs ( G )
2 tfri1dALT.1 . . . . 5  |-  F  = recs ( G )
32funeqi 5036 . . . 4  |-  ( Fun 
F  <->  Fun recs ( G ) )
41, 3mpbir 144 . . 3  |-  Fun  F
54a1i 9 . 2  |-  ( ph  ->  Fun  F )
6 eqid 2088 . . . . . 6  |-  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
76tfrlem8 6083 . . . . 5  |-  Ord  dom recs ( G )
82dmeqi 4637 . . . . . 6  |-  dom  F  =  dom recs ( G )
9 ordeq 4199 . . . . . 6  |-  ( dom 
F  =  dom recs ( G )  ->  ( Ord  dom  F  <->  Ord  dom recs ( G ) ) )
108, 9ax-mp 7 . . . . 5  |-  ( Ord 
dom  F  <->  Ord  dom recs ( G
) )
117, 10mpbir 144 . . . 4  |-  Ord  dom  F
12 ordsson 4309 . . . 4  |-  ( Ord 
dom  F  ->  dom  F  C_  On )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  dom  F  C_  On )
14 tfri1dALT.2 . . . . . . . . . 10  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
15 simpl 107 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  Fun  G )
1615alimi 1389 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x Fun  G
)
1714, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  A. x Fun  G
)
181719.21bi 1495 . . . . . . . 8  |-  ( ph  ->  Fun  G )
1918adantr 270 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Fun  G
)
20 ordon 4303 . . . . . . . 8  |-  Ord  On
2120a1i 9 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Ord  On )
22 simpr 108 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  ( G `  x )  e.  _V )
2322alimi 1389 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x ( G `
 x )  e. 
_V )
24 fveq2 5305 . . . . . . . . . . . 12  |-  ( x  =  f  ->  ( G `  x )  =  ( G `  f ) )
2524eleq1d 2156 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( G `  x
)  e.  _V  <->  ( G `  f )  e.  _V ) )
2625spv 1788 . . . . . . . . . 10  |-  ( A. x ( G `  x )  e.  _V  ->  ( G `  f
)  e.  _V )
2714, 23, 263syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G `  f
)  e.  _V )
2827adantr 270 . . . . . . . 8  |-  ( (
ph  /\  z  e.  On )  ->  ( G `
 f )  e. 
_V )
29283ad2ant1 964 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  On  /\  f  Fn  y )  ->  ( G `  f )  e.  _V )
30 suceloni 4318 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
31 unon 4328 . . . . . . . . 9  |-  U. On  =  On
3230, 31eleq2s 2182 . . . . . . . 8  |-  ( y  e.  U. On  ->  suc  y  e.  On )
3332adantl 271 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
34 suceloni 4318 . . . . . . . 8  |-  ( z  e.  On  ->  suc  z  e.  On )
3534adantl 271 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  e.  On )
362, 19, 21, 29, 33, 35tfr1on 6115 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  C_ 
dom  F )
37 vex 2622 . . . . . . 7  |-  z  e. 
_V
3837sucid 4244 . . . . . 6  |-  z  e. 
suc  z
39 ssel2 3020 . . . . . 6  |-  ( ( suc  z  C_  dom  F  /\  z  e.  suc  z )  ->  z  e.  dom  F )
4036, 38, 39sylancl 404 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
dom  F )
4140ex 113 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  dom  F
) )
4241ssrdv 3031 . . 3  |-  ( ph  ->  On  C_  dom  F )
4313, 42eqssd 3042 . 2  |-  ( ph  ->  dom  F  =  On )
44 df-fn 5018 . 2  |-  ( F  Fn  On  <->  ( Fun  F  /\  dom  F  =  On ) )
455, 43, 44sylanbrc 408 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   E.wrex 2360   _Vcvv 2619    C_ wss 2999   U.cuni 3653   Ord word 4189   Oncon0 4190   suc csuc 4192   dom cdm 4438    |` cres 4440   Fun wfun 5009    Fn wfn 5010   ` cfv 5015  recscrecs 6069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-recs 6070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator