| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version | ||
| Description: Alternate proof of tfri1d 6444 in terms of tfr1on 6459.
Although this does show that the tfr1on 6459 proof is general enough to
also prove tfri1d 6444, the tfri1d 6444 proof is simpler in places because it
does not need to deal with |
| Ref | Expression |
|---|---|
| tfri1dALT.1 |
|
| tfri1dALT.2 |
|
| Ref | Expression |
|---|---|
| tfri1dALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrfun 6429 |
. . . 4
| |
| 2 | tfri1dALT.1 |
. . . . 5
| |
| 3 | 2 | funeqi 5311 |
. . . 4
|
| 4 | 1, 3 | mpbir 146 |
. . 3
|
| 5 | 4 | a1i 9 |
. 2
|
| 6 | eqid 2207 |
. . . . . 6
| |
| 7 | 6 | tfrlem8 6427 |
. . . . 5
|
| 8 | 2 | dmeqi 4898 |
. . . . . 6
|
| 9 | ordeq 4437 |
. . . . . 6
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
|
| 11 | 7, 10 | mpbir 146 |
. . . 4
|
| 12 | ordsson 4558 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | tfri1dALT.2 |
. . . . . . . . . 10
| |
| 15 | simpl 109 |
. . . . . . . . . . 11
| |
| 16 | 15 | alimi 1479 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | 19.21bi 1582 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | ordon 4552 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 22 | alimi 1479 |
. . . . . . . . . 10
|
| 24 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 25 | 24 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 26 | 25 | spv 1884 |
. . . . . . . . . 10
|
| 27 | 14, 23, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28 | 3ad2ant1 1021 |
. . . . . . 7
|
| 30 | onsuc 4567 |
. . . . . . . . 9
| |
| 31 | unon 4577 |
. . . . . . . . 9
| |
| 32 | 30, 31 | eleq2s 2302 |
. . . . . . . 8
|
| 33 | 32 | adantl 277 |
. . . . . . 7
|
| 34 | onsuc 4567 |
. . . . . . . 8
| |
| 35 | 34 | adantl 277 |
. . . . . . 7
|
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6459 |
. . . . . 6
|
| 37 | vex 2779 |
. . . . . . 7
| |
| 38 | 37 | sucid 4482 |
. . . . . 6
|
| 39 | ssel2 3196 |
. . . . . 6
| |
| 40 | 36, 38, 39 | sylancl 413 |
. . . . 5
|
| 41 | 40 | ex 115 |
. . . 4
|
| 42 | 41 | ssrdv 3207 |
. . 3
|
| 43 | 13, 42 | eqssd 3218 |
. 2
|
| 44 | df-fn 5293 |
. 2
| |
| 45 | 5, 43, 44 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-recs 6414 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |