| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version | ||
| Description: Alternate proof of tfri1d 6420 in terms of tfr1on 6435.
Although this does show that the tfr1on 6435 proof is general enough to
also prove tfri1d 6420, the tfri1d 6420 proof is simpler in places because it
does not need to deal with |
| Ref | Expression |
|---|---|
| tfri1dALT.1 |
|
| tfri1dALT.2 |
|
| Ref | Expression |
|---|---|
| tfri1dALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrfun 6405 |
. . . 4
| |
| 2 | tfri1dALT.1 |
. . . . 5
| |
| 3 | 2 | funeqi 5291 |
. . . 4
|
| 4 | 1, 3 | mpbir 146 |
. . 3
|
| 5 | 4 | a1i 9 |
. 2
|
| 6 | eqid 2204 |
. . . . . 6
| |
| 7 | 6 | tfrlem8 6403 |
. . . . 5
|
| 8 | 2 | dmeqi 4878 |
. . . . . 6
|
| 9 | ordeq 4418 |
. . . . . 6
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
|
| 11 | 7, 10 | mpbir 146 |
. . . 4
|
| 12 | ordsson 4539 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | tfri1dALT.2 |
. . . . . . . . . 10
| |
| 15 | simpl 109 |
. . . . . . . . . . 11
| |
| 16 | 15 | alimi 1477 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | 19.21bi 1580 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | ordon 4533 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 22 | alimi 1477 |
. . . . . . . . . 10
|
| 24 | fveq2 5575 |
. . . . . . . . . . . 12
| |
| 25 | 24 | eleq1d 2273 |
. . . . . . . . . . 11
|
| 26 | 25 | spv 1882 |
. . . . . . . . . 10
|
| 27 | 14, 23, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28 | 3ad2ant1 1020 |
. . . . . . 7
|
| 30 | onsuc 4548 |
. . . . . . . . 9
| |
| 31 | unon 4558 |
. . . . . . . . 9
| |
| 32 | 30, 31 | eleq2s 2299 |
. . . . . . . 8
|
| 33 | 32 | adantl 277 |
. . . . . . 7
|
| 34 | onsuc 4548 |
. . . . . . . 8
| |
| 35 | 34 | adantl 277 |
. . . . . . 7
|
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6435 |
. . . . . 6
|
| 37 | vex 2774 |
. . . . . . 7
| |
| 38 | 37 | sucid 4463 |
. . . . . 6
|
| 39 | ssel2 3187 |
. . . . . 6
| |
| 40 | 36, 38, 39 | sylancl 413 |
. . . . 5
|
| 41 | 40 | ex 115 |
. . . 4
|
| 42 | 41 | ssrdv 3198 |
. . 3
|
| 43 | 13, 42 | eqssd 3209 |
. 2
|
| 44 | df-fn 5273 |
. 2
| |
| 45 | 5, 43, 44 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-recs 6390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |