ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1dALT Unicode version

Theorem tfri1dALT 6495
Description: Alternate proof of tfri1d 6479 in terms of tfr1on 6494.

Although this does show that the tfr1on 6494 proof is general enough to also prove tfri1d 6479, the tfri1d 6479 proof is simpler in places because it does not need to deal with 
X being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

Hypotheses
Ref Expression
tfri1dALT.1  |-  F  = recs ( G )
tfri1dALT.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1dALT  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1dALT
Dummy variables  z  a  b  c  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrfun 6464 . . . 4  |-  Fun recs ( G )
2 tfri1dALT.1 . . . . 5  |-  F  = recs ( G )
32funeqi 5338 . . . 4  |-  ( Fun 
F  <->  Fun recs ( G ) )
41, 3mpbir 146 . . 3  |-  Fun  F
54a1i 9 . 2  |-  ( ph  ->  Fun  F )
6 eqid 2229 . . . . . 6  |-  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
76tfrlem8 6462 . . . . 5  |-  Ord  dom recs ( G )
82dmeqi 4923 . . . . . 6  |-  dom  F  =  dom recs ( G )
9 ordeq 4462 . . . . . 6  |-  ( dom 
F  =  dom recs ( G )  ->  ( Ord  dom  F  <->  Ord  dom recs ( G ) ) )
108, 9ax-mp 5 . . . . 5  |-  ( Ord 
dom  F  <->  Ord  dom recs ( G
) )
117, 10mpbir 146 . . . 4  |-  Ord  dom  F
12 ordsson 4583 . . . 4  |-  ( Ord 
dom  F  ->  dom  F  C_  On )
1311, 12mp1i 10 . . 3  |-  ( ph  ->  dom  F  C_  On )
14 tfri1dALT.2 . . . . . . . . . 10  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
15 simpl 109 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  Fun  G )
1615alimi 1501 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x Fun  G
)
1714, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  A. x Fun  G
)
181719.21bi 1604 . . . . . . . 8  |-  ( ph  ->  Fun  G )
1918adantr 276 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Fun  G
)
20 ordon 4577 . . . . . . . 8  |-  Ord  On
2120a1i 9 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  Ord  On )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( Fun  G  /\  ( G `  x )  e.  _V )  ->  ( G `  x )  e.  _V )
2322alimi 1501 . . . . . . . . . 10  |-  ( A. x ( Fun  G  /\  ( G `  x
)  e.  _V )  ->  A. x ( G `
 x )  e. 
_V )
24 fveq2 5626 . . . . . . . . . . . 12  |-  ( x  =  f  ->  ( G `  x )  =  ( G `  f ) )
2524eleq1d 2298 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( G `  x
)  e.  _V  <->  ( G `  f )  e.  _V ) )
2625spv 1906 . . . . . . . . . 10  |-  ( A. x ( G `  x )  e.  _V  ->  ( G `  f
)  e.  _V )
2714, 23, 263syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G `  f
)  e.  _V )
2827adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  On )  ->  ( G `
 f )  e. 
_V )
29283ad2ant1 1042 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  On  /\  f  Fn  y )  ->  ( G `  f )  e.  _V )
30 onsuc 4592 . . . . . . . . 9  |-  ( y  e.  On  ->  suc  y  e.  On )
31 unon 4602 . . . . . . . . 9  |-  U. On  =  On
3230, 31eleq2s 2324 . . . . . . . 8  |-  ( y  e.  U. On  ->  suc  y  e.  On )
3332adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  y  e.  U. On )  ->  suc  y  e.  On )
34 onsuc 4592 . . . . . . . 8  |-  ( z  e.  On  ->  suc  z  e.  On )
3534adantl 277 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  e.  On )
362, 19, 21, 29, 33, 35tfr1on 6494 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  suc  z  C_ 
dom  F )
37 vex 2802 . . . . . . 7  |-  z  e. 
_V
3837sucid 4507 . . . . . 6  |-  z  e. 
suc  z
39 ssel2 3219 . . . . . 6  |-  ( ( suc  z  C_  dom  F  /\  z  e.  suc  z )  ->  z  e.  dom  F )
4036, 38, 39sylancl 413 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
dom  F )
4140ex 115 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  dom  F
) )
4241ssrdv 3230 . . 3  |-  ( ph  ->  On  C_  dom  F )
4313, 42eqssd 3241 . 2  |-  ( ph  ->  dom  F  =  On )
44 df-fn 5320 . 2  |-  ( F  Fn  On  <->  ( Fun  F  /\  dom  F  =  On ) )
455, 43, 44sylanbrc 417 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799    C_ wss 3197   U.cuni 3887   Ord word 4452   Oncon0 4453   suc csuc 4455   dom cdm 4718    |` cres 4720   Fun wfun 5311    Fn wfn 5312   ` cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator