| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version | ||
| Description: Alternate proof of tfri1d 6421 in terms of tfr1on 6436.
Although this does show that the tfr1on 6436 proof is general enough to
also prove tfri1d 6421, the tfri1d 6421 proof is simpler in places because it
does not need to deal with |
| Ref | Expression |
|---|---|
| tfri1dALT.1 |
|
| tfri1dALT.2 |
|
| Ref | Expression |
|---|---|
| tfri1dALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrfun 6406 |
. . . 4
| |
| 2 | tfri1dALT.1 |
. . . . 5
| |
| 3 | 2 | funeqi 5292 |
. . . 4
|
| 4 | 1, 3 | mpbir 146 |
. . 3
|
| 5 | 4 | a1i 9 |
. 2
|
| 6 | eqid 2205 |
. . . . . 6
| |
| 7 | 6 | tfrlem8 6404 |
. . . . 5
|
| 8 | 2 | dmeqi 4879 |
. . . . . 6
|
| 9 | ordeq 4419 |
. . . . . 6
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
|
| 11 | 7, 10 | mpbir 146 |
. . . 4
|
| 12 | ordsson 4540 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | tfri1dALT.2 |
. . . . . . . . . 10
| |
| 15 | simpl 109 |
. . . . . . . . . . 11
| |
| 16 | 15 | alimi 1478 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | 19.21bi 1581 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | ordon 4534 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 22 | alimi 1478 |
. . . . . . . . . 10
|
| 24 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 25 | 24 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 26 | 25 | spv 1883 |
. . . . . . . . . 10
|
| 27 | 14, 23, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28 | 3ad2ant1 1021 |
. . . . . . 7
|
| 30 | onsuc 4549 |
. . . . . . . . 9
| |
| 31 | unon 4559 |
. . . . . . . . 9
| |
| 32 | 30, 31 | eleq2s 2300 |
. . . . . . . 8
|
| 33 | 32 | adantl 277 |
. . . . . . 7
|
| 34 | onsuc 4549 |
. . . . . . . 8
| |
| 35 | 34 | adantl 277 |
. . . . . . 7
|
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6436 |
. . . . . 6
|
| 37 | vex 2775 |
. . . . . . 7
| |
| 38 | 37 | sucid 4464 |
. . . . . 6
|
| 39 | ssel2 3188 |
. . . . . 6
| |
| 40 | 36, 38, 39 | sylancl 413 |
. . . . 5
|
| 41 | 40 | ex 115 |
. . . 4
|
| 42 | 41 | ssrdv 3199 |
. . 3
|
| 43 | 13, 42 | eqssd 3210 |
. 2
|
| 44 | df-fn 5274 |
. 2
| |
| 45 | 5, 43, 44 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-recs 6391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |