| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfri1dALT | Unicode version | ||
| Description: Alternate proof of tfri1d 6402 in terms of tfr1on 6417.
Although this does show that the tfr1on 6417 proof is general enough to
also prove tfri1d 6402, the tfri1d 6402 proof is simpler in places because it
does not need to deal with |
| Ref | Expression |
|---|---|
| tfri1dALT.1 |
|
| tfri1dALT.2 |
|
| Ref | Expression |
|---|---|
| tfri1dALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrfun 6387 |
. . . 4
| |
| 2 | tfri1dALT.1 |
. . . . 5
| |
| 3 | 2 | funeqi 5280 |
. . . 4
|
| 4 | 1, 3 | mpbir 146 |
. . 3
|
| 5 | 4 | a1i 9 |
. 2
|
| 6 | eqid 2196 |
. . . . . 6
| |
| 7 | 6 | tfrlem8 6385 |
. . . . 5
|
| 8 | 2 | dmeqi 4868 |
. . . . . 6
|
| 9 | ordeq 4408 |
. . . . . 6
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
|
| 11 | 7, 10 | mpbir 146 |
. . . 4
|
| 12 | ordsson 4529 |
. . . 4
| |
| 13 | 11, 12 | mp1i 10 |
. . 3
|
| 14 | tfri1dALT.2 |
. . . . . . . . . 10
| |
| 15 | simpl 109 |
. . . . . . . . . . 11
| |
| 16 | 15 | alimi 1469 |
. . . . . . . . . 10
|
| 17 | 14, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | 19.21bi 1572 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | ordon 4523 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 22 | alimi 1469 |
. . . . . . . . . 10
|
| 24 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 25 | 24 | eleq1d 2265 |
. . . . . . . . . . 11
|
| 26 | 25 | spv 1874 |
. . . . . . . . . 10
|
| 27 | 14, 23, 26 | 3syl 17 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 28 | 3ad2ant1 1020 |
. . . . . . 7
|
| 30 | onsuc 4538 |
. . . . . . . . 9
| |
| 31 | unon 4548 |
. . . . . . . . 9
| |
| 32 | 30, 31 | eleq2s 2291 |
. . . . . . . 8
|
| 33 | 32 | adantl 277 |
. . . . . . 7
|
| 34 | onsuc 4538 |
. . . . . . . 8
| |
| 35 | 34 | adantl 277 |
. . . . . . 7
|
| 36 | 2, 19, 21, 29, 33, 35 | tfr1on 6417 |
. . . . . 6
|
| 37 | vex 2766 |
. . . . . . 7
| |
| 38 | 37 | sucid 4453 |
. . . . . 6
|
| 39 | ssel2 3179 |
. . . . . 6
| |
| 40 | 36, 38, 39 | sylancl 413 |
. . . . 5
|
| 41 | 40 | ex 115 |
. . . 4
|
| 42 | 41 | ssrdv 3190 |
. . 3
|
| 43 | 13, 42 | eqssd 3201 |
. 2
|
| 44 | df-fn 5262 |
. 2
| |
| 45 | 5, 43, 44 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-recs 6372 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |