| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemi14d | Unicode version | ||
| Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlemi14d.1 |
|
| tfrlemi14d.2 |
|
| Ref | Expression |
|---|---|
| tfrlemi14d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemi14d.1 |
. . . 4
| |
| 2 | 1 | tfrlem8 6404 |
. . 3
|
| 3 | ordsson 4540 |
. . 3
| |
| 4 | 2, 3 | mp1i 10 |
. 2
|
| 5 | tfrlemi14d.2 |
. . . . . . . 8
| |
| 6 | 1, 5 | tfrlemi1 6418 |
. . . . . . 7
|
| 7 | 5 | ad2antrr 488 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | simprl 529 |
. . . . . . . . 9
| |
| 10 | fneq2 5363 |
. . . . . . . . . . . . 13
| |
| 11 | raleq 2702 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . . . . . . 12
|
| 13 | 12 | rspcev 2877 |
. . . . . . . . . . 11
|
| 14 | 13 | adantll 476 |
. . . . . . . . . 10
|
| 15 | vex 2775 |
. . . . . . . . . . 11
| |
| 16 | 1, 15 | tfrlem3a 6396 |
. . . . . . . . . 10
|
| 17 | 14, 16 | sylibr 134 |
. . . . . . . . 9
|
| 18 | 1, 7, 8, 9, 17 | tfrlemisucaccv 6411 |
. . . . . . . 8
|
| 19 | vex 2775 |
. . . . . . . . . . . 12
| |
| 20 | 5 | tfrlem3-2d 6398 |
. . . . . . . . . . . . 13
|
| 21 | 20 | simprd 114 |
. . . . . . . . . . . 12
|
| 22 | opexg 4272 |
. . . . . . . . . . . 12
| |
| 23 | 19, 21, 22 | sylancr 414 |
. . . . . . . . . . 11
|
| 24 | snidg 3662 |
. . . . . . . . . . 11
| |
| 25 | elun2 3341 |
. . . . . . . . . . 11
| |
| 26 | 23, 24, 25 | 3syl 17 |
. . . . . . . . . 10
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 28 | opeldmg 4883 |
. . . . . . . . . . 11
| |
| 29 | 19, 21, 28 | sylancr 414 |
. . . . . . . . . 10
|
| 30 | 29 | ad2antrr 488 |
. . . . . . . . 9
|
| 31 | 27, 30 | mpd 13 |
. . . . . . . 8
|
| 32 | dmeq 4878 |
. . . . . . . . . 10
| |
| 33 | 32 | eleq2d 2275 |
. . . . . . . . 9
|
| 34 | 33 | rspcev 2877 |
. . . . . . . 8
|
| 35 | 18, 31, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | 6, 35 | exlimddv 1922 |
. . . . . 6
|
| 37 | eliun 3931 |
. . . . . 6
| |
| 38 | 36, 37 | sylibr 134 |
. . . . 5
|
| 39 | 38 | ex 115 |
. . . 4
|
| 40 | 39 | ssrdv 3199 |
. . 3
|
| 41 | 1 | recsfval 6401 |
. . . . 5
|
| 42 | 41 | dmeqi 4879 |
. . . 4
|
| 43 | dmuni 4888 |
. . . 4
| |
| 44 | 42, 43 | eqtri 2226 |
. . 3
|
| 45 | 40, 44 | sseqtrrdi 3242 |
. 2
|
| 46 | 4, 45 | eqssd 3210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-recs 6391 |
| This theorem is referenced by: tfri1d 6421 |
| Copyright terms: Public domain | W3C validator |