Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemi14d | Unicode version |
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
Ref | Expression |
---|---|
tfrlemi14d.1 | |
tfrlemi14d.2 |
Ref | Expression |
---|---|
tfrlemi14d | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemi14d.1 | . . . 4 | |
2 | 1 | tfrlem8 6297 | . . 3 recs |
3 | ordsson 4476 | . . 3 recs recs | |
4 | 2, 3 | mp1i 10 | . 2 recs |
5 | tfrlemi14d.2 | . . . . . . . 8 | |
6 | 1, 5 | tfrlemi1 6311 | . . . . . . 7 |
7 | 5 | ad2antrr 485 | . . . . . . . . 9 |
8 | simplr 525 | . . . . . . . . 9 | |
9 | simprl 526 | . . . . . . . . 9 | |
10 | fneq2 5287 | . . . . . . . . . . . . 13 | |
11 | raleq 2665 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | anbi12d 470 | . . . . . . . . . . . 12 |
13 | 12 | rspcev 2834 | . . . . . . . . . . 11 |
14 | 13 | adantll 473 | . . . . . . . . . 10 |
15 | vex 2733 | . . . . . . . . . . 11 | |
16 | 1, 15 | tfrlem3a 6289 | . . . . . . . . . 10 |
17 | 14, 16 | sylibr 133 | . . . . . . . . 9 |
18 | 1, 7, 8, 9, 17 | tfrlemisucaccv 6304 | . . . . . . . 8 |
19 | vex 2733 | . . . . . . . . . . . 12 | |
20 | 5 | tfrlem3-2d 6291 | . . . . . . . . . . . . 13 |
21 | 20 | simprd 113 | . . . . . . . . . . . 12 |
22 | opexg 4213 | . . . . . . . . . . . 12 | |
23 | 19, 21, 22 | sylancr 412 | . . . . . . . . . . 11 |
24 | snidg 3612 | . . . . . . . . . . 11 | |
25 | elun2 3295 | . . . . . . . . . . 11 | |
26 | 23, 24, 25 | 3syl 17 | . . . . . . . . . 10 |
27 | 26 | ad2antrr 485 | . . . . . . . . 9 |
28 | opeldmg 4816 | . . . . . . . . . . 11 | |
29 | 19, 21, 28 | sylancr 412 | . . . . . . . . . 10 |
30 | 29 | ad2antrr 485 | . . . . . . . . 9 |
31 | 27, 30 | mpd 13 | . . . . . . . 8 |
32 | dmeq 4811 | . . . . . . . . . 10 | |
33 | 32 | eleq2d 2240 | . . . . . . . . 9 |
34 | 33 | rspcev 2834 | . . . . . . . 8 |
35 | 18, 31, 34 | syl2anc 409 | . . . . . . 7 |
36 | 6, 35 | exlimddv 1891 | . . . . . 6 |
37 | eliun 3877 | . . . . . 6 | |
38 | 36, 37 | sylibr 133 | . . . . 5 |
39 | 38 | ex 114 | . . . 4 |
40 | 39 | ssrdv 3153 | . . 3 |
41 | 1 | recsfval 6294 | . . . . 5 recs |
42 | 41 | dmeqi 4812 | . . . 4 recs |
43 | dmuni 4821 | . . . 4 | |
44 | 42, 43 | eqtri 2191 | . . 3 recs |
45 | 40, 44 | sseqtrrdi 3196 | . 2 recs |
46 | 4, 45 | eqssd 3164 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 cun 3119 wss 3121 csn 3583 cop 3586 cuni 3796 ciun 3873 word 4347 con0 4348 cdm 4611 cres 4613 wfun 5192 wfn 5193 cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 |
This theorem is referenced by: tfri1d 6314 |
Copyright terms: Public domain | W3C validator |