| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemi14d | Unicode version | ||
| Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlemi14d.1 |
|
| tfrlemi14d.2 |
|
| Ref | Expression |
|---|---|
| tfrlemi14d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemi14d.1 |
. . . 4
| |
| 2 | 1 | tfrlem8 6427 |
. . 3
|
| 3 | ordsson 4558 |
. . 3
| |
| 4 | 2, 3 | mp1i 10 |
. 2
|
| 5 | tfrlemi14d.2 |
. . . . . . . 8
| |
| 6 | 1, 5 | tfrlemi1 6441 |
. . . . . . 7
|
| 7 | 5 | ad2antrr 488 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | simprl 529 |
. . . . . . . . 9
| |
| 10 | fneq2 5382 |
. . . . . . . . . . . . 13
| |
| 11 | raleq 2705 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . . . . . . 12
|
| 13 | 12 | rspcev 2884 |
. . . . . . . . . . 11
|
| 14 | 13 | adantll 476 |
. . . . . . . . . 10
|
| 15 | vex 2779 |
. . . . . . . . . . 11
| |
| 16 | 1, 15 | tfrlem3a 6419 |
. . . . . . . . . 10
|
| 17 | 14, 16 | sylibr 134 |
. . . . . . . . 9
|
| 18 | 1, 7, 8, 9, 17 | tfrlemisucaccv 6434 |
. . . . . . . 8
|
| 19 | vex 2779 |
. . . . . . . . . . . 12
| |
| 20 | 5 | tfrlem3-2d 6421 |
. . . . . . . . . . . . 13
|
| 21 | 20 | simprd 114 |
. . . . . . . . . . . 12
|
| 22 | opexg 4290 |
. . . . . . . . . . . 12
| |
| 23 | 19, 21, 22 | sylancr 414 |
. . . . . . . . . . 11
|
| 24 | snidg 3672 |
. . . . . . . . . . 11
| |
| 25 | elun2 3349 |
. . . . . . . . . . 11
| |
| 26 | 23, 24, 25 | 3syl 17 |
. . . . . . . . . 10
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 28 | opeldmg 4902 |
. . . . . . . . . . 11
| |
| 29 | 19, 21, 28 | sylancr 414 |
. . . . . . . . . 10
|
| 30 | 29 | ad2antrr 488 |
. . . . . . . . 9
|
| 31 | 27, 30 | mpd 13 |
. . . . . . . 8
|
| 32 | dmeq 4897 |
. . . . . . . . . 10
| |
| 33 | 32 | eleq2d 2277 |
. . . . . . . . 9
|
| 34 | 33 | rspcev 2884 |
. . . . . . . 8
|
| 35 | 18, 31, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | 6, 35 | exlimddv 1923 |
. . . . . 6
|
| 37 | eliun 3945 |
. . . . . 6
| |
| 38 | 36, 37 | sylibr 134 |
. . . . 5
|
| 39 | 38 | ex 115 |
. . . 4
|
| 40 | 39 | ssrdv 3207 |
. . 3
|
| 41 | 1 | recsfval 6424 |
. . . . 5
|
| 42 | 41 | dmeqi 4898 |
. . . 4
|
| 43 | dmuni 4907 |
. . . 4
| |
| 44 | 42, 43 | eqtri 2228 |
. . 3
|
| 45 | 40, 44 | sseqtrrdi 3250 |
. 2
|
| 46 | 4, 45 | eqssd 3218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-recs 6414 |
| This theorem is referenced by: tfri1d 6444 |
| Copyright terms: Public domain | W3C validator |