| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemi14d | Unicode version | ||
| Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlemi14d.1 |
|
| tfrlemi14d.2 |
|
| Ref | Expression |
|---|---|
| tfrlemi14d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemi14d.1 |
. . . 4
| |
| 2 | 1 | tfrlem8 6464 |
. . 3
|
| 3 | ordsson 4584 |
. . 3
| |
| 4 | 2, 3 | mp1i 10 |
. 2
|
| 5 | tfrlemi14d.2 |
. . . . . . . 8
| |
| 6 | 1, 5 | tfrlemi1 6478 |
. . . . . . 7
|
| 7 | 5 | ad2antrr 488 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | simprl 529 |
. . . . . . . . 9
| |
| 10 | fneq2 5410 |
. . . . . . . . . . . . 13
| |
| 11 | raleq 2728 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . . . . . . 12
|
| 13 | 12 | rspcev 2907 |
. . . . . . . . . . 11
|
| 14 | 13 | adantll 476 |
. . . . . . . . . 10
|
| 15 | vex 2802 |
. . . . . . . . . . 11
| |
| 16 | 1, 15 | tfrlem3a 6456 |
. . . . . . . . . 10
|
| 17 | 14, 16 | sylibr 134 |
. . . . . . . . 9
|
| 18 | 1, 7, 8, 9, 17 | tfrlemisucaccv 6471 |
. . . . . . . 8
|
| 19 | vex 2802 |
. . . . . . . . . . . 12
| |
| 20 | 5 | tfrlem3-2d 6458 |
. . . . . . . . . . . . 13
|
| 21 | 20 | simprd 114 |
. . . . . . . . . . . 12
|
| 22 | opexg 4314 |
. . . . . . . . . . . 12
| |
| 23 | 19, 21, 22 | sylancr 414 |
. . . . . . . . . . 11
|
| 24 | snidg 3695 |
. . . . . . . . . . 11
| |
| 25 | elun2 3372 |
. . . . . . . . . . 11
| |
| 26 | 23, 24, 25 | 3syl 17 |
. . . . . . . . . 10
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 28 | opeldmg 4928 |
. . . . . . . . . . 11
| |
| 29 | 19, 21, 28 | sylancr 414 |
. . . . . . . . . 10
|
| 30 | 29 | ad2antrr 488 |
. . . . . . . . 9
|
| 31 | 27, 30 | mpd 13 |
. . . . . . . 8
|
| 32 | dmeq 4923 |
. . . . . . . . . 10
| |
| 33 | 32 | eleq2d 2299 |
. . . . . . . . 9
|
| 34 | 33 | rspcev 2907 |
. . . . . . . 8
|
| 35 | 18, 31, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | 6, 35 | exlimddv 1945 |
. . . . . 6
|
| 37 | eliun 3969 |
. . . . . 6
| |
| 38 | 36, 37 | sylibr 134 |
. . . . 5
|
| 39 | 38 | ex 115 |
. . . 4
|
| 40 | 39 | ssrdv 3230 |
. . 3
|
| 41 | 1 | recsfval 6461 |
. . . . 5
|
| 42 | 41 | dmeqi 4924 |
. . . 4
|
| 43 | dmuni 4933 |
. . . 4
| |
| 44 | 42, 43 | eqtri 2250 |
. . 3
|
| 45 | 40, 44 | sseqtrrdi 3273 |
. 2
|
| 46 | 4, 45 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6451 |
| This theorem is referenced by: tfri1d 6481 |
| Copyright terms: Public domain | W3C validator |