ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d Unicode version

Theorem tfrlemi14d 6442
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemi14d.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrlemi14d  |-  ( ph  ->  dom recs ( F )  =  On )
Distinct variable groups:    x, f, y, A    f, F, x, y    ph, f, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfrlemi14d
Dummy variables  g  h  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 6427 . . 3  |-  Ord  dom recs ( F )
3 ordsson 4558 . . 3  |-  ( Ord 
dom recs ( F )  ->  dom recs ( F )  C_  On )
42, 3mp1i 10 . 2  |-  ( ph  ->  dom recs ( F ) 
C_  On )
5 tfrlemi14d.2 . . . . . . . 8  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
61, 5tfrlemi1 6441 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
75ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
8 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  z  e.  On )
9 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  g  Fn  z
)
10 fneq2 5382 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
g  Fn  w  <->  g  Fn  z ) )
11 raleq 2705 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  ( A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) )  <->  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1210, 11anbi12d 473 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) )  <-> 
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) ) )
1312rspcev 2884 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  ( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  ->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1413adantll 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
15 vex 2779 . . . . . . . . . . 11  |-  g  e. 
_V
161, 15tfrlem3a 6419 . . . . . . . . . 10  |-  ( g  e.  A  <->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1714, 16sylibr 134 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  g  e.  A
)
181, 7, 8, 9, 17tfrlemisucaccv 6434 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
19 vex 2779 . . . . . . . . . . . 12  |-  z  e. 
_V
205tfrlem3-2d 6421 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
2120simprd 114 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  g
)  e.  _V )
22 opexg 4290 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  ->  <. z ,  ( F `
 g ) >.  e.  _V )
2319, 21, 22sylancr 414 . . . . . . . . . . 11  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  _V )
24 snidg 3672 . . . . . . . . . . 11  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  <. z ,  ( F `  g
) >.  e.  { <. z ,  ( F `  g ) >. } )
25 elun2 3349 . . . . . . . . . . 11  |-  ( <.
z ,  ( F `
 g ) >.  e.  { <. z ,  ( F `  g )
>. }  ->  <. z ,  ( F `  g
) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
2623, 24, 253syl 17 . . . . . . . . . 10  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
2726ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) )
28 opeldmg 4902 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  -> 
( <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) ) )
2919, 21, 28sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) ) )
3029ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  ( <. z ,  ( F `  g ) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } )  ->  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )
3127, 30mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
32 dmeq 4897 . . . . . . . . . 10  |-  ( h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  dom  h  =  dom  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3332eleq2d 2277 . . . . . . . . 9  |-  ( h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  (
z  e.  dom  h  <->  z  e.  dom  ( g  u.  { <. z ,  ( F `  g ) >. } ) ) )
3433rspcev 2884 . . . . . . . 8  |-  ( ( ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  A  /\  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  E. h  e.  A  z  e.  dom  h )
3518, 31, 34syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  E. h  e.  A  z  e.  dom  h )
366, 35exlimddv 1923 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  E. h  e.  A  z  e.  dom  h )
37 eliun 3945 . . . . . 6  |-  ( z  e.  U_ h  e.  A  dom  h  <->  E. h  e.  A  z  e.  dom  h )
3836, 37sylibr 134 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
U_ h  e.  A  dom  h )
3938ex 115 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  U_ h  e.  A  dom  h ) )
4039ssrdv 3207 . . 3  |-  ( ph  ->  On  C_  U_ h  e.  A  dom  h )
411recsfval 6424 . . . . 5  |- recs ( F )  =  U. A
4241dmeqi 4898 . . . 4  |-  dom recs ( F )  =  dom  U. A
43 dmuni 4907 . . . 4  |-  dom  U. A  =  U_ h  e.  A  dom  h
4442, 43eqtri 2228 . . 3  |-  dom recs ( F )  =  U_ h  e.  A  dom  h
4540, 44sseqtrrdi 3250 . 2  |-  ( ph  ->  On  C_  dom recs ( F ) )
464, 45eqssd 3218 1  |-  ( ph  ->  dom recs ( F )  =  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776    u. cun 3172    C_ wss 3174   {csn 3643   <.cop 3646   U.cuni 3864   U_ciun 3941   Ord word 4427   Oncon0 4428   dom cdm 4693    |` cres 4695   Fun wfun 5284    Fn wfn 5285   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414
This theorem is referenced by:  tfri1d  6444
  Copyright terms: Public domain W3C validator