Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemi14d | Unicode version |
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
Ref | Expression |
---|---|
tfrlemi14d.1 | |
tfrlemi14d.2 |
Ref | Expression |
---|---|
tfrlemi14d | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemi14d.1 | . . . 4 | |
2 | 1 | tfrlem8 6286 | . . 3 recs |
3 | ordsson 4469 | . . 3 recs recs | |
4 | 2, 3 | mp1i 10 | . 2 recs |
5 | tfrlemi14d.2 | . . . . . . . 8 | |
6 | 1, 5 | tfrlemi1 6300 | . . . . . . 7 |
7 | 5 | ad2antrr 480 | . . . . . . . . 9 |
8 | simplr 520 | . . . . . . . . 9 | |
9 | simprl 521 | . . . . . . . . 9 | |
10 | fneq2 5277 | . . . . . . . . . . . . 13 | |
11 | raleq 2661 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | anbi12d 465 | . . . . . . . . . . . 12 |
13 | 12 | rspcev 2830 | . . . . . . . . . . 11 |
14 | 13 | adantll 468 | . . . . . . . . . 10 |
15 | vex 2729 | . . . . . . . . . . 11 | |
16 | 1, 15 | tfrlem3a 6278 | . . . . . . . . . 10 |
17 | 14, 16 | sylibr 133 | . . . . . . . . 9 |
18 | 1, 7, 8, 9, 17 | tfrlemisucaccv 6293 | . . . . . . . 8 |
19 | vex 2729 | . . . . . . . . . . . 12 | |
20 | 5 | tfrlem3-2d 6280 | . . . . . . . . . . . . 13 |
21 | 20 | simprd 113 | . . . . . . . . . . . 12 |
22 | opexg 4206 | . . . . . . . . . . . 12 | |
23 | 19, 21, 22 | sylancr 411 | . . . . . . . . . . 11 |
24 | snidg 3605 | . . . . . . . . . . 11 | |
25 | elun2 3290 | . . . . . . . . . . 11 | |
26 | 23, 24, 25 | 3syl 17 | . . . . . . . . . 10 |
27 | 26 | ad2antrr 480 | . . . . . . . . 9 |
28 | opeldmg 4809 | . . . . . . . . . . 11 | |
29 | 19, 21, 28 | sylancr 411 | . . . . . . . . . 10 |
30 | 29 | ad2antrr 480 | . . . . . . . . 9 |
31 | 27, 30 | mpd 13 | . . . . . . . 8 |
32 | dmeq 4804 | . . . . . . . . . 10 | |
33 | 32 | eleq2d 2236 | . . . . . . . . 9 |
34 | 33 | rspcev 2830 | . . . . . . . 8 |
35 | 18, 31, 34 | syl2anc 409 | . . . . . . 7 |
36 | 6, 35 | exlimddv 1886 | . . . . . 6 |
37 | eliun 3870 | . . . . . 6 | |
38 | 36, 37 | sylibr 133 | . . . . 5 |
39 | 38 | ex 114 | . . . 4 |
40 | 39 | ssrdv 3148 | . . 3 |
41 | 1 | recsfval 6283 | . . . . 5 recs |
42 | 41 | dmeqi 4805 | . . . 4 recs |
43 | dmuni 4814 | . . . 4 | |
44 | 42, 43 | eqtri 2186 | . . 3 recs |
45 | 40, 44 | sseqtrrdi 3191 | . 2 recs |
46 | 4, 45 | eqssd 3159 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 cun 3114 wss 3116 csn 3576 cop 3579 cuni 3789 ciun 3866 word 4340 con0 4341 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-recs 6273 |
This theorem is referenced by: tfri1d 6303 |
Copyright terms: Public domain | W3C validator |