ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfval Unicode version

Theorem xpsfval 12931
Description: The value of the function appearing in xpsval 12935. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
Assertion
Ref Expression
xpsfval  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X F Y )  =  { <. (/)
,  X >. ,  <. 1o ,  Y >. } )
Distinct variable groups:    x, A, y   
x, B, y    x, X, y    x, Y, y
Allowed substitution hints:    F( x, y)

Proof of Theorem xpsfval
StepHypRef Expression
1 0lt2o 6494 . . . 4  |-  (/)  e.  2o
2 simpl 109 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  X  e.  A )
3 opexg 4257 . . . 4  |-  ( (
(/)  e.  2o  /\  X  e.  A )  ->  <. (/) ,  X >.  e.  _V )
41, 2, 3sylancr 414 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  -> 
<. (/) ,  X >.  e. 
_V )
5 1lt2o 6495 . . . 4  |-  1o  e.  2o
6 simpr 110 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  Y  e.  B )
7 opexg 4257 . . . 4  |-  ( ( 1o  e.  2o  /\  Y  e.  B )  -> 
<. 1o ,  Y >.  e. 
_V )
85, 6, 7sylancr 414 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  -> 
<. 1o ,  Y >.  e. 
_V )
9 prexg 4240 . . 3  |-  ( (
<. (/) ,  X >.  e. 
_V  /\  <. 1o ,  Y >.  e.  _V )  ->  { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V )
104, 8, 9syl2anc 411 . 2  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  { <. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V )
11 simpl 109 . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
1211opeq2d 3811 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
13 simpr 110 . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
1413opeq2d 3811 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  -> 
<. 1o ,  y >.  =  <. 1o ,  Y >. )
1512, 14preq12d 3703 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. }  =  { <. (/) ,  X >. ,  <. 1o ,  Y >. } )
16 xpsff1o.f . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
1715, 16ovmpoga 6048 . 2  |-  ( ( X  e.  A  /\  Y  e.  B  /\  {
<. (/) ,  X >. , 
<. 1o ,  Y >. }  e.  _V )  -> 
( X F Y )  =  { <. (/)
,  X >. ,  <. 1o ,  Y >. } )
1810, 17mpd3an3 1349 1  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X F Y )  =  { <. (/)
,  X >. ,  <. 1o ,  Y >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446   {cpr 3619   <.cop 3621  (class class class)co 5918    e. cmpo 5920   1oc1o 6462   2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470
This theorem is referenced by:  xpsff1o  12932
  Copyright terms: Public domain W3C validator