| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfval | Unicode version | ||
| Description: The value of the function appearing in xpsval 13380. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f |
|
| Ref | Expression |
|---|---|
| xpsfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6585 |
. . . 4
| |
| 2 | simpl 109 |
. . . 4
| |
| 3 | opexg 4313 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . 3
|
| 5 | 1lt2o 6586 |
. . . 4
| |
| 6 | simpr 110 |
. . . 4
| |
| 7 | opexg 4313 |
. . . 4
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . 3
|
| 9 | prexg 4294 |
. . 3
| |
| 10 | 4, 8, 9 | syl2anc 411 |
. 2
|
| 11 | simpl 109 |
. . . . 5
| |
| 12 | 11 | opeq2d 3863 |
. . . 4
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | 13 | opeq2d 3863 |
. . . 4
|
| 15 | 12, 14 | preq12d 3751 |
. . 3
|
| 16 | xpsff1o.f |
. . 3
| |
| 17 | 15, 16 | ovmpoga 6133 |
. 2
|
| 18 | 10, 17 | mpd3an3 1372 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: xpsff1o 13377 |
| Copyright terms: Public domain | W3C validator |