| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsfval | Unicode version | ||
| Description: The value of the function appearing in xpsval 13269. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f |
|
| Ref | Expression |
|---|---|
| xpsfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6545 |
. . . 4
| |
| 2 | simpl 109 |
. . . 4
| |
| 3 | opexg 4285 |
. . . 4
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . 3
|
| 5 | 1lt2o 6546 |
. . . 4
| |
| 6 | simpr 110 |
. . . 4
| |
| 7 | opexg 4285 |
. . . 4
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . 3
|
| 9 | prexg 4266 |
. . 3
| |
| 10 | 4, 8, 9 | syl2anc 411 |
. 2
|
| 11 | simpl 109 |
. . . . 5
| |
| 12 | 11 | opeq2d 3835 |
. . . 4
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | 13 | opeq2d 3835 |
. . . 4
|
| 15 | 12, 14 | preq12d 3723 |
. . 3
|
| 16 | xpsff1o.f |
. . 3
| |
| 17 | 15, 16 | ovmpoga 6093 |
. 2
|
| 18 | 10, 17 | mpd3an3 1351 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1o 6520 df-2o 6521 |
| This theorem is referenced by: xpsff1o 13266 |
| Copyright terms: Public domain | W3C validator |