| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ring1 | Unicode version | ||
| Description: The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| ring1.m |
|
| Ref | Expression |
|---|---|
| ring1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4267 |
. . . . . . . 8
| |
| 2 | opexg 4313 |
. . . . . . . . . . 11
| |
| 3 | 2 | anidms 397 |
. . . . . . . . . 10
|
| 4 | opexg 4313 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpancom 422 |
. . . . . . . . 9
|
| 6 | snexg 4267 |
. . . . . . . . 9
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . 8
|
| 8 | ring1.m |
. . . . . . . . 9
| |
| 9 | 8 | rngbaseg 13164 |
. . . . . . . 8
|
| 10 | 1, 7, 7, 9 | syl3anc 1271 |
. . . . . . 7
|
| 11 | 10 | opeq2d 3863 |
. . . . . 6
|
| 12 | 8 | rngplusgg 13165 |
. . . . . . . 8
|
| 13 | 1, 7, 7, 12 | syl3anc 1271 |
. . . . . . 7
|
| 14 | 13 | opeq2d 3863 |
. . . . . 6
|
| 15 | 11, 14 | preq12d 3751 |
. . . . 5
|
| 16 | eqid 2229 |
. . . . . 6
| |
| 17 | 16 | grp1 13634 |
. . . . 5
|
| 18 | 15, 17 | eqeltrrd 2307 |
. . . 4
|
| 19 | basendxnn 13083 |
. . . . . . . 8
| |
| 20 | opexg 4313 |
. . . . . . . 8
| |
| 21 | 19, 1, 20 | sylancr 414 |
. . . . . . 7
|
| 22 | plusgslid 13140 |
. . . . . . . . 9
| |
| 23 | 22 | simpri 113 |
. . . . . . . 8
|
| 24 | opexg 4313 |
. . . . . . . 8
| |
| 25 | 23, 7, 24 | sylancr 414 |
. . . . . . 7
|
| 26 | mulrslid 13160 |
. . . . . . . . 9
| |
| 27 | 26 | simpri 113 |
. . . . . . . 8
|
| 28 | opexg 4313 |
. . . . . . . 8
| |
| 29 | 27, 7, 28 | sylancr 414 |
. . . . . . 7
|
| 30 | tpexg 4534 |
. . . . . . 7
| |
| 31 | 21, 25, 29, 30 | syl3anc 1271 |
. . . . . 6
|
| 32 | 8, 31 | eqeltrid 2316 |
. . . . 5
|
| 33 | eqid 2229 |
. . . . . 6
| |
| 34 | eqid 2229 |
. . . . . 6
| |
| 35 | eqid 2229 |
. . . . . 6
| |
| 36 | 33, 34, 35 | grppropstrg 13547 |
. . . . 5
|
| 37 | 32, 36 | syl 14 |
. . . 4
|
| 38 | 18, 37 | mpbird 167 |
. . 3
|
| 39 | 16 | mnd1 13483 |
. . . 4
|
| 40 | eqidd 2230 |
. . . . 5
| |
| 41 | 16 | grpbaseg 13155 |
. . . . . . 7
|
| 42 | 1, 7, 41 | syl2anc 411 |
. . . . . 6
|
| 43 | eqid 2229 |
. . . . . . . 8
| |
| 44 | 43, 33 | mgpbasg 13884 |
. . . . . . 7
|
| 45 | 32, 44 | syl 14 |
. . . . . 6
|
| 46 | 10, 42, 45 | 3eqtr3rd 2271 |
. . . . 5
|
| 47 | 8 | rngmulrg 13166 |
. . . . . . . 8
|
| 48 | 1, 7, 7, 47 | syl3anc 1271 |
. . . . . . 7
|
| 49 | 16 | grpplusgg 13156 |
. . . . . . . 8
|
| 50 | 1, 7, 49 | syl2anc 411 |
. . . . . . 7
|
| 51 | eqid 2229 |
. . . . . . . . 9
| |
| 52 | 43, 51 | mgpplusgg 13882 |
. . . . . . . 8
|
| 53 | 32, 52 | syl 14 |
. . . . . . 7
|
| 54 | 48, 50, 53 | 3eqtr3rd 2271 |
. . . . . 6
|
| 55 | 54 | oveqdr 6028 |
. . . . 5
|
| 56 | 40, 46, 55 | mndpropd 13468 |
. . . 4
|
| 57 | 39, 56 | mpbird 167 |
. . 3
|
| 58 | df-ov 6003 |
. . . . . . 7
| |
| 59 | fvsng 5834 |
. . . . . . . 8
| |
| 60 | 3, 59 | mpancom 422 |
. . . . . . 7
|
| 61 | 58, 60 | eqtrid 2274 |
. . . . . 6
|
| 62 | 61 | oveq2d 6016 |
. . . . 5
|
| 63 | 61, 61 | oveq12d 6018 |
. . . . 5
|
| 64 | 62, 63 | eqtr4d 2265 |
. . . 4
|
| 65 | 61 | oveq1d 6015 |
. . . . 5
|
| 66 | 65, 63 | eqtr4d 2265 |
. . . 4
|
| 67 | oveq1 6007 |
. . . . . . . . 9
| |
| 68 | oveq1 6007 |
. . . . . . . . . 10
| |
| 69 | oveq1 6007 |
. . . . . . . . . 10
| |
| 70 | 68, 69 | oveq12d 6018 |
. . . . . . . . 9
|
| 71 | 67, 70 | eqeq12d 2244 |
. . . . . . . 8
|
| 72 | 68 | oveq1d 6015 |
. . . . . . . . 9
|
| 73 | 69 | oveq1d 6015 |
. . . . . . . . 9
|
| 74 | 72, 73 | eqeq12d 2244 |
. . . . . . . 8
|
| 75 | 71, 74 | anbi12d 473 |
. . . . . . 7
|
| 76 | 75 | 2ralbidv 2554 |
. . . . . 6
|
| 77 | 76 | ralsng 3706 |
. . . . 5
|
| 78 | oveq1 6007 |
. . . . . . . . . 10
| |
| 79 | 78 | oveq2d 6016 |
. . . . . . . . 9
|
| 80 | oveq2 6008 |
. . . . . . . . . 10
| |
| 81 | 80 | oveq1d 6015 |
. . . . . . . . 9
|
| 82 | 79, 81 | eqeq12d 2244 |
. . . . . . . 8
|
| 83 | 80 | oveq1d 6015 |
. . . . . . . . 9
|
| 84 | 78 | oveq2d 6016 |
. . . . . . . . 9
|
| 85 | 83, 84 | eqeq12d 2244 |
. . . . . . . 8
|
| 86 | 82, 85 | anbi12d 473 |
. . . . . . 7
|
| 87 | 86 | ralbidv 2530 |
. . . . . 6
|
| 88 | 87 | ralsng 3706 |
. . . . 5
|
| 89 | oveq2 6008 |
. . . . . . . . 9
| |
| 90 | 89 | oveq2d 6016 |
. . . . . . . 8
|
| 91 | 89 | oveq2d 6016 |
. . . . . . . 8
|
| 92 | 90, 91 | eqeq12d 2244 |
. . . . . . 7
|
| 93 | oveq2 6008 |
. . . . . . . 8
| |
| 94 | 89, 89 | oveq12d 6018 |
. . . . . . . 8
|
| 95 | 93, 94 | eqeq12d 2244 |
. . . . . . 7
|
| 96 | 92, 95 | anbi12d 473 |
. . . . . 6
|
| 97 | 96 | ralsng 3706 |
. . . . 5
|
| 98 | 77, 88, 97 | 3bitrd 214 |
. . . 4
|
| 99 | 64, 66, 98 | mpbir2and 950 |
. . 3
|
| 100 | 38, 57, 99 | 3jca 1201 |
. 2
|
| 101 | eqidd 2230 |
. . . . . . . . . 10
| |
| 102 | 13 | oveqd 6017 |
. . . . . . . . . 10
|
| 103 | 48, 101, 102 | oveq123d 6021 |
. . . . . . . . 9
|
| 104 | 48 | oveqd 6017 |
. . . . . . . . . 10
|
| 105 | 48 | oveqd 6017 |
. . . . . . . . . 10
|
| 106 | 13, 104, 105 | oveq123d 6021 |
. . . . . . . . 9
|
| 107 | 103, 106 | eqeq12d 2244 |
. . . . . . . 8
|
| 108 | 13 | oveqd 6017 |
. . . . . . . . . 10
|
| 109 | eqidd 2230 |
. . . . . . . . . 10
| |
| 110 | 48, 108, 109 | oveq123d 6021 |
. . . . . . . . 9
|
| 111 | 48 | oveqd 6017 |
. . . . . . . . . 10
|
| 112 | 13, 105, 111 | oveq123d 6021 |
. . . . . . . . 9
|
| 113 | 110, 112 | eqeq12d 2244 |
. . . . . . . 8
|
| 114 | 107, 113 | anbi12d 473 |
. . . . . . 7
|
| 115 | 10, 114 | raleqbidv 2744 |
. . . . . 6
|
| 116 | 10, 115 | raleqbidv 2744 |
. . . . 5
|
| 117 | 10, 116 | raleqbidv 2744 |
. . . 4
|
| 118 | 117 | 3anbi3d 1352 |
. . 3
|
| 119 | 33, 43, 34, 51 | isring 13958 |
. . 3
|
| 120 | 118, 119 | bitr4di 198 |
. 2
|
| 121 | 100, 120 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-struct 13029 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-mgp 13879 df-ring 13956 |
| This theorem is referenced by: ringn0 14018 |
| Copyright terms: Public domain | W3C validator |