Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ring1 | Unicode version |
Description: The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
ring1.m |
Ref | Expression |
---|---|
ring1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4179 | . . . . . . . 8 | |
2 | opexg 4222 | . . . . . . . . . . 11 | |
3 | 2 | anidms 397 | . . . . . . . . . 10 |
4 | opexg 4222 | . . . . . . . . . 10 | |
5 | 3, 4 | mpancom 422 | . . . . . . . . 9 |
6 | snexg 4179 | . . . . . . . . 9 | |
7 | 5, 6 | syl 14 | . . . . . . . 8 |
8 | ring1.m | . . . . . . . . 9 | |
9 | 8 | rngbaseg 12545 | . . . . . . . 8 |
10 | 1, 7, 7, 9 | syl3anc 1238 | . . . . . . 7 |
11 | 10 | opeq2d 3781 | . . . . . 6 |
12 | 8 | rngplusgg 12546 | . . . . . . . 8 |
13 | 1, 7, 7, 12 | syl3anc 1238 | . . . . . . 7 |
14 | 13 | opeq2d 3781 | . . . . . 6 |
15 | 11, 14 | preq12d 3674 | . . . . 5 |
16 | eqid 2175 | . . . . . 6 | |
17 | 16 | grp1 12835 | . . . . 5 |
18 | 15, 17 | eqeltrrd 2253 | . . . 4 |
19 | basendxnn 12482 | . . . . . . . 8 | |
20 | opexg 4222 | . . . . . . . 8 | |
21 | 19, 1, 20 | sylancr 414 | . . . . . . 7 |
22 | plusgslid 12524 | . . . . . . . . 9 Slot | |
23 | 22 | simpri 113 | . . . . . . . 8 |
24 | opexg 4222 | . . . . . . . 8 | |
25 | 23, 7, 24 | sylancr 414 | . . . . . . 7 |
26 | mulrslid 12541 | . . . . . . . . 9 Slot | |
27 | 26 | simpri 113 | . . . . . . . 8 |
28 | opexg 4222 | . . . . . . . 8 | |
29 | 27, 7, 28 | sylancr 414 | . . . . . . 7 |
30 | tpexg 4438 | . . . . . . 7 | |
31 | 21, 25, 29, 30 | syl3anc 1238 | . . . . . 6 |
32 | 8, 31 | eqeltrid 2262 | . . . . 5 |
33 | eqid 2175 | . . . . . 6 | |
34 | eqid 2175 | . . . . . 6 | |
35 | eqid 2175 | . . . . . 6 | |
36 | 33, 34, 35 | grppropstrg 12755 | . . . . 5 |
37 | 32, 36 | syl 14 | . . . 4 |
38 | 18, 37 | mpbird 167 | . . 3 |
39 | 16 | mnd1 12708 | . . . 4 |
40 | eqidd 2176 | . . . . 5 mulGrp mulGrp | |
41 | 16 | grpbaseg 12537 | . . . . . . 7 |
42 | 1, 7, 41 | syl2anc 411 | . . . . . 6 |
43 | eqid 2175 | . . . . . . . 8 mulGrp mulGrp | |
44 | 43, 33 | mgpbasg 12930 | . . . . . . 7 mulGrp |
45 | 32, 44 | syl 14 | . . . . . 6 mulGrp |
46 | 10, 42, 45 | 3eqtr3rd 2217 | . . . . 5 mulGrp |
47 | 8 | rngmulrg 12547 | . . . . . . . 8 |
48 | 1, 7, 7, 47 | syl3anc 1238 | . . . . . . 7 |
49 | 16 | grpplusgg 12538 | . . . . . . . 8 |
50 | 1, 7, 49 | syl2anc 411 | . . . . . . 7 |
51 | eqid 2175 | . . . . . . . . 9 | |
52 | 43, 51 | mgpplusgg 12929 | . . . . . . . 8 mulGrp |
53 | 32, 52 | syl 14 | . . . . . . 7 mulGrp |
54 | 48, 50, 53 | 3eqtr3rd 2217 | . . . . . 6 mulGrp |
55 | 54 | oveqdr 5893 | . . . . 5 mulGrp mulGrp mulGrp |
56 | 40, 46, 55 | mndpropd 12705 | . . . 4 mulGrp |
57 | 39, 56 | mpbird 167 | . . 3 mulGrp |
58 | df-ov 5868 | . . . . . . 7 | |
59 | fvsng 5704 | . . . . . . . 8 | |
60 | 3, 59 | mpancom 422 | . . . . . . 7 |
61 | 58, 60 | eqtrid 2220 | . . . . . 6 |
62 | 61 | oveq2d 5881 | . . . . 5 |
63 | 61, 61 | oveq12d 5883 | . . . . 5 |
64 | 62, 63 | eqtr4d 2211 | . . . 4 |
65 | 61 | oveq1d 5880 | . . . . 5 |
66 | 65, 63 | eqtr4d 2211 | . . . 4 |
67 | oveq1 5872 | . . . . . . . . 9 | |
68 | oveq1 5872 | . . . . . . . . . 10 | |
69 | oveq1 5872 | . . . . . . . . . 10 | |
70 | 68, 69 | oveq12d 5883 | . . . . . . . . 9 |
71 | 67, 70 | eqeq12d 2190 | . . . . . . . 8 |
72 | 68 | oveq1d 5880 | . . . . . . . . 9 |
73 | 69 | oveq1d 5880 | . . . . . . . . 9 |
74 | 72, 73 | eqeq12d 2190 | . . . . . . . 8 |
75 | 71, 74 | anbi12d 473 | . . . . . . 7 |
76 | 75 | 2ralbidv 2499 | . . . . . 6 |
77 | 76 | ralsng 3629 | . . . . 5 |
78 | oveq1 5872 | . . . . . . . . . 10 | |
79 | 78 | oveq2d 5881 | . . . . . . . . 9 |
80 | oveq2 5873 | . . . . . . . . . 10 | |
81 | 80 | oveq1d 5880 | . . . . . . . . 9 |
82 | 79, 81 | eqeq12d 2190 | . . . . . . . 8 |
83 | 80 | oveq1d 5880 | . . . . . . . . 9 |
84 | 78 | oveq2d 5881 | . . . . . . . . 9 |
85 | 83, 84 | eqeq12d 2190 | . . . . . . . 8 |
86 | 82, 85 | anbi12d 473 | . . . . . . 7 |
87 | 86 | ralbidv 2475 | . . . . . 6 |
88 | 87 | ralsng 3629 | . . . . 5 |
89 | oveq2 5873 | . . . . . . . . 9 | |
90 | 89 | oveq2d 5881 | . . . . . . . 8 |
91 | 89 | oveq2d 5881 | . . . . . . . 8 |
92 | 90, 91 | eqeq12d 2190 | . . . . . . 7 |
93 | oveq2 5873 | . . . . . . . 8 | |
94 | 89, 89 | oveq12d 5883 | . . . . . . . 8 |
95 | 93, 94 | eqeq12d 2190 | . . . . . . 7 |
96 | 92, 95 | anbi12d 473 | . . . . . 6 |
97 | 96 | ralsng 3629 | . . . . 5 |
98 | 77, 88, 97 | 3bitrd 214 | . . . 4 |
99 | 64, 66, 98 | mpbir2and 944 | . . 3 |
100 | 38, 57, 99 | 3jca 1177 | . 2 mulGrp |
101 | eqidd 2176 | . . . . . . . . . 10 | |
102 | 13 | oveqd 5882 | . . . . . . . . . 10 |
103 | 48, 101, 102 | oveq123d 5886 | . . . . . . . . 9 |
104 | 48 | oveqd 5882 | . . . . . . . . . 10 |
105 | 48 | oveqd 5882 | . . . . . . . . . 10 |
106 | 13, 104, 105 | oveq123d 5886 | . . . . . . . . 9 |
107 | 103, 106 | eqeq12d 2190 | . . . . . . . 8 |
108 | 13 | oveqd 5882 | . . . . . . . . . 10 |
109 | eqidd 2176 | . . . . . . . . . 10 | |
110 | 48, 108, 109 | oveq123d 5886 | . . . . . . . . 9 |
111 | 48 | oveqd 5882 | . . . . . . . . . 10 |
112 | 13, 105, 111 | oveq123d 5886 | . . . . . . . . 9 |
113 | 110, 112 | eqeq12d 2190 | . . . . . . . 8 |
114 | 107, 113 | anbi12d 473 | . . . . . . 7 |
115 | 10, 114 | raleqbidv 2682 | . . . . . 6 |
116 | 10, 115 | raleqbidv 2682 | . . . . 5 |
117 | 10, 116 | raleqbidv 2682 | . . . 4 |
118 | 117 | 3anbi3d 1318 | . . 3 mulGrp mulGrp |
119 | 33, 43, 34, 51 | isring 12976 | . . 3 mulGrp |
120 | 118, 119 | bitr4di 198 | . 2 mulGrp |
121 | 100, 120 | mpbid 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 cvv 2735 csn 3589 cpr 3590 ctp 3591 cop 3592 cfv 5208 (class class class)co 5865 cn 8890 cnx 12424 Slot cslot 12426 cbs 12427 cplusg 12491 cmulr 12492 cmnd 12681 cgrp 12737 mulGrpcmgp 12925 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-tp 3597 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-3 8950 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-struct 12429 df-ndx 12430 df-slot 12431 df-base 12433 df-sets 12434 df-plusg 12504 df-mulr 12505 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 df-mgp 12926 df-ring 12974 |
This theorem is referenced by: ringn0 13029 |
Copyright terms: Public domain | W3C validator |