ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12d GIF version

Theorem preq12d 3703
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1d.1 (𝜑𝐴 = 𝐵)
preq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
preq12d (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷})

Proof of Theorem preq12d
StepHypRef Expression
1 preq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 preq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 preq12 3697 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷})
41, 2, 3syl2anc 411 1 (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  opeq1  3804  opeq2  3805  xrminrecl  11416  xrminadd  11418  xpsfval  12931  xpsval  12935  ring1  13555  xmetxp  14675  xmetxpbl  14676  txmetcnp  14686  hovera  14801  hoverb  14802  hoverlt1  14803  hovergt0  14804  ivthdich  14807
  Copyright terms: Public domain W3C validator