| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq12d | GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| preq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| preq12d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | preq12 3701 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: opeq1 3808 opeq2 3809 xrminrecl 11438 xrminadd 11440 xpsfval 12991 xpsval 12995 ring1 13615 xmetxp 14743 xmetxpbl 14744 txmetcnp 14754 hovera 14883 hoverb 14884 hoverlt1 14885 hovergt0 14886 ivthdich 14889 |
| Copyright terms: Public domain | W3C validator |