![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preq12d | GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
preq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
preq12d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | preq12 3698 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {cpr 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 |
This theorem is referenced by: opeq1 3805 opeq2 3806 xrminrecl 11419 xrminadd 11421 xpsfval 12934 xpsval 12938 ring1 13558 xmetxp 14686 xmetxpbl 14687 txmetcnp 14697 hovera 14826 hoverb 14827 hoverlt1 14828 hovergt0 14829 ivthdich 14832 |
Copyright terms: Public domain | W3C validator |