| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq12d | GIF version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| preq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| preq12d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | preq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | preq12 3745 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: opeq1 3857 opeq2 3858 xrminrecl 11792 xrminadd 11794 prdsval 13314 xpsfval 13389 xpsval 13393 ring1 14030 xmetxp 15189 xmetxpbl 15190 txmetcnp 15200 hovera 15329 hoverb 15330 hoverlt1 15331 hovergt0 15332 ivthdich 15335 wkslem1 16041 wkslem2 16042 iswlk 16044 2wlklem 16095 |
| Copyright terms: Public domain | W3C validator |