ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminadd Unicode version

Theorem xrminadd 11421
Description: Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
Assertion
Ref Expression
xrminadd  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { ( A +e
B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrminadd
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
21xnegcld 9924 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
A  e.  RR* )
3 simp2 1000 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
43xnegcld 9924 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
B  e.  RR* )
5 simp3 1001 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
65xnegcld 9924 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
C  e.  RR* )
7 xrmaxcl 11398 . . . 4  |-  ( ( 
-e B  e. 
RR*  /\  -e C  e.  RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
84, 6, 7syl2anc 411 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e.  RR* )
9 xnegdi 9937 . . 3  |-  ( ( 
-e A  e. 
RR*  /\  sup ( {  -e B ,  -e C } ,  RR* ,  <  )  e. 
RR* )  ->  -e
(  -e A +e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) )  =  (  -e  -e A +e  -e sup ( { 
-e B ,  -e C } ,  RR* ,  <  ) ) )
102, 8, 9syl2anc 411 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
(  -e A +e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) )  =  (  -e  -e A +e  -e sup ( { 
-e B ,  -e C } ,  RR* ,  <  ) ) )
111, 3xaddcld 9953 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e B )  e.  RR* )
121, 5xaddcld 9953 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e C )  e.  RR* )
13 xrminmax 11411 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  ( A +e
C )  e.  RR* )  -> inf ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  -e sup ( {  -e
( A +e
B ) ,  -e ( A +e C ) } ,  RR* ,  <  )
)
1411, 12, 13syl2anc 411 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { ( A +e
B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  -e sup ( {  -e
( A +e
B ) ,  -e ( A +e C ) } ,  RR* ,  <  )
)
15 xnegdi 9937 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
161, 3, 15syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
17 xnegdi 9937 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  -e
( A +e
C )  =  ( 
-e A +e  -e C ) )
181, 5, 17syl2anc 411 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e
( A +e
C )  =  ( 
-e A +e  -e C ) )
1916, 18preq12d 3704 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  {  -e
( A +e
B ) ,  -e ( A +e C ) }  =  { (  -e A +e  -e B ) ,  (  -e A +e  -e
C ) } )
2019supeq1d 7048 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( {  -e ( A +e B ) ,  -e
( A +e
C ) } ,  RR* ,  <  )  =  sup ( { ( 
-e A +e  -e B ) ,  (  -e
A +e  -e C ) } ,  RR* ,  <  )
)
21 xnegeq 9896 . . . 4  |-  ( sup ( {  -e
( A +e
B ) ,  -e ( A +e C ) } ,  RR* ,  <  )  =  sup ( { ( 
-e A +e  -e B ) ,  (  -e
A +e  -e C ) } ,  RR* ,  <  )  -> 
-e sup ( {  -e ( A +e B ) ,  -e ( A +e C ) } ,  RR* ,  <  )  =  -e sup ( { ( 
-e A +e  -e B ) ,  (  -e
A +e  -e C ) } ,  RR* ,  <  )
)
2220, 21syl 14 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e sup ( {  -e
( A +e
B ) ,  -e ( A +e C ) } ,  RR* ,  <  )  =  -e sup ( { (  -e
A +e  -e B ) ,  (  -e A +e  -e
C ) } ,  RR* ,  <  ) )
23 xrmaxadd 11407 . . . . 5  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR*  /\  -e
C  e.  RR* )  ->  sup ( { ( 
-e A +e  -e B ) ,  (  -e
A +e  -e C ) } ,  RR* ,  <  )  =  (  -e A +e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) ) )
242, 4, 6, 23syl3anc 1249 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( { (  -e
A +e  -e B ) ,  (  -e A +e  -e
C ) } ,  RR* ,  <  )  =  (  -e A +e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) ) )
25 xnegeq 9896 . . . 4  |-  ( sup ( { (  -e A +e  -e B ) ,  (  -e A +e  -e
C ) } ,  RR* ,  <  )  =  (  -e A +e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )  ->  -e sup ( { (  -e
A +e  -e B ) ,  (  -e A +e  -e
C ) } ,  RR* ,  <  )  = 
-e (  -e A +e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) ) )
2624, 25syl 14 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -e sup ( { (  -e A +e  -e B ) ,  (  -e A +e  -e
C ) } ,  RR* ,  <  )  = 
-e (  -e A +e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) ) )
2714, 22, 263eqtrd 2230 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { ( A +e
B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  -e (  -e
A +e sup ( {  -e
B ,  -e
C } ,  RR* ,  <  ) ) )
28 xnegneg 9902 . . . . 5  |-  ( A  e.  RR*  ->  -e  -e A  =  A )
2928eqcomd 2199 . . . 4  |-  ( A  e.  RR*  ->  A  = 
-e  -e
A )
301, 29syl 14 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  =  -e  -e
A )
31 xrminmax 11411 . . . 4  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
323, 5, 31syl2anc 411 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) )
3330, 32oveq12d 5937 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +einf ( { B ,  C } ,  RR* ,  <  )
)  =  (  -e  -e A +e  -e sup ( {  -e B ,  -e C } ,  RR* ,  <  ) ) )
3410, 27, 333eqtr4d 2236 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> inf ( { ( A +e
B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   {cpr 3620  (class class class)co 5919   supcsup 7043  infcinf 7044   RR*cxr 8055    < clt 8056    -ecxne 9838   +ecxad 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator