ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl Unicode version

Theorem xmetxpbl 12868
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmetxpbl.r  |-  ( ph  ->  R  e.  RR* )
xmetxpbl.c  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
Assertion
Ref Expression
xmetxpbl  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Distinct variable groups:    u, C, v   
u, M, v    u, N, v    u, X, v   
u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    R( v, u)

Proof of Theorem xmetxpbl
Dummy variables  n  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . 4  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . 4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 12867 . . 3  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 xmetxpbl.c . . 3  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
6 xmetxpbl.r . . 3  |-  ( ph  ->  R  e.  RR* )
7 blval 12749 . . 3  |-  ( ( P  e.  ( *Met `  ( X  X.  Y ) )  /\  C  e.  ( X  X.  Y )  /\  R  e.  RR* )  ->  ( C (
ball `  P ) R )  =  {
t  e.  ( X  X.  Y )  |  ( C P t )  <  R }
)
84, 5, 6, 7syl3anc 1220 . 2  |-  ( ph  ->  ( C ( ball `  P ) R )  =  { t  e.  ( X  X.  Y
)  |  ( C P t )  < 
R } )
95adantr 274 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  C  e.  ( X  X.  Y
) )
10 simpr 109 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  t  e.  ( X  X.  Y
) )
112adantr 274 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  M  e.  ( *Met `  X ) )
12 xp1st 6107 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 1st `  C )  e.  X )
139, 12syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  C )  e.  X )
14 xp1st 6107 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 1st `  t )  e.  X )
1514adantl 275 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  t )  e.  X )
16 xmetcl 12712 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  ( 1st `  t )  e.  X )  -> 
( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
1711, 13, 15, 16syl3anc 1220 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
183adantr 274 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  N  e.  ( *Met `  Y ) )
19 xp2nd 6108 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 2nd `  C )  e.  Y )
209, 19syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  C )  e.  Y )
21 xp2nd 6108 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 2nd `  t )  e.  Y )
2221adantl 275 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  t )  e.  Y )
23 xmetcl 12712 . . . . . . . 8  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  ( 2nd `  t )  e.  Y )  -> 
( ( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
2418, 20, 22, 23syl3anc 1220 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
25 xrmaxcl 11131 . . . . . . 7  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR* )  ->  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  e.  RR* )
2617, 24, 25syl2anc 409 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )
27 fveq2 5465 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 1st `  u )  =  ( 1st `  C
) )
28 fveq2 5465 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 1st `  v )  =  ( 1st `  t
) )
2927, 28oveqan12d 5837 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  C
) M ( 1st `  t ) ) )
30 fveq2 5465 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 2nd `  u )  =  ( 2nd `  C
) )
31 fveq2 5465 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 2nd `  v )  =  ( 2nd `  t
) )
3230, 31oveqan12d 5837 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  C
) N ( 2nd `  t ) ) )
3329, 32preq12d 3644 . . . . . . . 8  |-  ( ( u  =  C  /\  v  =  t )  ->  { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) }  =  { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } )
3433supeq1d 6923 . . . . . . 7  |-  ( ( u  =  C  /\  v  =  t )  ->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3534, 1ovmpoga 5944 . . . . . 6  |-  ( ( C  e.  ( X  X.  Y )  /\  t  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
369, 10, 26, 35syl3anc 1220 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3736breq1d 3975 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  < 
R ) )
386adantr 274 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  R  e.  RR* )
39 xrmaxltsup 11137 . . . . 5  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR*  /\  R  e.  RR* )  ->  ( sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4017, 24, 38, 39syl3anc 1220 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( sup ( { ( ( 1st `  C ) M ( 1st `  t
) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4137, 40bitrd 187 . . 3  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  ( (
( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) ) )
4241rabbidva 2700 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( C P t )  <  R }  =  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) } )
43 1st2nd2 6117 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
4443ad2antrl 482 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
45 xp1st 6107 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 1st `  n )  e.  X )
4645ad2antrl 482 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  X )
47 simprrl 529 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
485, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  C
)  e.  X )
49 elbl 12751 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  R  e.  RR* )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
502, 48, 6, 49syl3anc 1220 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5150adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5246, 47, 51mpbir2and 929 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
53 xp2nd 6108 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 2nd `  n )  e.  Y )
5453ad2antrl 482 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  Y )
55 simprrr 530 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
565, 19syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  C
)  e.  Y )
57 elbl 12751 . . . . . . . . 9  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  R  e.  RR* )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
583, 56, 6, 57syl3anc 1220 . . . . . . . 8  |-  ( ph  ->  ( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
5958adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6054, 55, 59mpbir2and 929 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6144, 52, 60jca32 308 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
62 simprl 521 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
63 simprrl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
6450adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
6563, 64mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  X  /\  ( ( 1st `  C
) M ( 1st `  n ) )  < 
R ) )
6665simpld 111 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  X )
67 simprrr 530 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6858adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6967, 68mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  Y  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) )
7069simpld 111 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  Y )
7162, 66, 70jca32 308 . . . . . . 7  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  X  /\  ( 2nd `  n )  e.  Y
) ) )
72 elxp6 6111 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  X  /\  ( 2nd `  n )  e.  Y ) ) )
7371, 72sylibr 133 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  e.  ( X  X.  Y ) )
7465simprd 113 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
7569simprd 113 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
7673, 74, 75jca32 308 . . . . 5  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  e.  ( X  X.  Y )  /\  ( ( ( 1st `  C ) M ( 1st `  n
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) ) )
7761, 76impbida 586 . . . 4  |-  ( ph  ->  ( ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) ) )
78 fveq2 5465 . . . . . . . 8  |-  ( t  =  n  ->  ( 1st `  t )  =  ( 1st `  n
) )
7978oveq2d 5834 . . . . . . 7  |-  ( t  =  n  ->  (
( 1st `  C
) M ( 1st `  t ) )  =  ( ( 1st `  C
) M ( 1st `  n ) ) )
8079breq1d 3975 . . . . . 6  |-  ( t  =  n  ->  (
( ( 1st `  C
) M ( 1st `  t ) )  < 
R  <->  ( ( 1st `  C ) M ( 1st `  n ) )  <  R ) )
81 fveq2 5465 . . . . . . . 8  |-  ( t  =  n  ->  ( 2nd `  t )  =  ( 2nd `  n
) )
8281oveq2d 5834 . . . . . . 7  |-  ( t  =  n  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  =  ( ( 2nd `  C
) N ( 2nd `  n ) ) )
8382breq1d 3975 . . . . . 6  |-  ( t  =  n  ->  (
( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R  <->  ( ( 2nd `  C ) N ( 2nd `  n ) )  <  R ) )
8480, 83anbi12d 465 . . . . 5  |-  ( t  =  n  ->  (
( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R )  <->  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
8584elrab 2868 . . . 4  |-  ( n  e.  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) }  <->  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
86 elxp6 6111 . . . 4  |-  ( n  e.  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) )  <-> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8777, 85, 863bitr4g 222 . . 3  |-  ( ph  ->  ( n  e.  {
t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  <->  n  e.  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8887eqrdv 2155 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) )
898, 42, 883eqtrd 2194 1  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {crab 2439   {cpr 3561   <.cop 3563   class class class wbr 3965    X. cxp 4581   ` cfv 5167  (class class class)co 5818    e. cmpo 5820   1stc1st 6080   2ndc2nd 6081   supcsup 6918   RR*cxr 7894    < clt 7895   *Metcxmet 12340   ballcbl 12342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-map 6588  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-xneg 9661  df-xadd 9662  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-topgen 12332  df-psmet 12347  df-xmet 12348  df-bl 12350  df-mopn 12351  df-top 12356  df-topon 12369  df-bases 12401
This theorem is referenced by:  xmettxlem  12869  xmettx  12870
  Copyright terms: Public domain W3C validator