ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl Unicode version

Theorem xmetxpbl 15095
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmetxpbl.r  |-  ( ph  ->  R  e.  RR* )
xmetxpbl.c  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
Assertion
Ref Expression
xmetxpbl  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Distinct variable groups:    u, C, v   
u, M, v    u, N, v    u, X, v   
u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    R( v, u)

Proof of Theorem xmetxpbl
Dummy variables  n  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . 4  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . 4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 15094 . . 3  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 xmetxpbl.c . . 3  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
6 xmetxpbl.r . . 3  |-  ( ph  ->  R  e.  RR* )
7 blval 14976 . . 3  |-  ( ( P  e.  ( *Met `  ( X  X.  Y ) )  /\  C  e.  ( X  X.  Y )  /\  R  e.  RR* )  ->  ( C (
ball `  P ) R )  =  {
t  e.  ( X  X.  Y )  |  ( C P t )  <  R }
)
84, 5, 6, 7syl3anc 1250 . 2  |-  ( ph  ->  ( C ( ball `  P ) R )  =  { t  e.  ( X  X.  Y
)  |  ( C P t )  < 
R } )
95adantr 276 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  C  e.  ( X  X.  Y
) )
10 simpr 110 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  t  e.  ( X  X.  Y
) )
112adantr 276 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  M  e.  ( *Met `  X ) )
12 xp1st 6274 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 1st `  C )  e.  X )
139, 12syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  C )  e.  X )
14 xp1st 6274 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 1st `  t )  e.  X )
1514adantl 277 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  t )  e.  X )
16 xmetcl 14939 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  ( 1st `  t )  e.  X )  -> 
( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
1711, 13, 15, 16syl3anc 1250 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
183adantr 276 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  N  e.  ( *Met `  Y ) )
19 xp2nd 6275 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 2nd `  C )  e.  Y )
209, 19syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  C )  e.  Y )
21 xp2nd 6275 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 2nd `  t )  e.  Y )
2221adantl 277 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  t )  e.  Y )
23 xmetcl 14939 . . . . . . . 8  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  ( 2nd `  t )  e.  Y )  -> 
( ( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
2418, 20, 22, 23syl3anc 1250 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
25 xrmaxcl 11678 . . . . . . 7  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR* )  ->  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  e.  RR* )
2617, 24, 25syl2anc 411 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )
27 fveq2 5599 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 1st `  u )  =  ( 1st `  C
) )
28 fveq2 5599 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 1st `  v )  =  ( 1st `  t
) )
2927, 28oveqan12d 5986 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  C
) M ( 1st `  t ) ) )
30 fveq2 5599 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 2nd `  u )  =  ( 2nd `  C
) )
31 fveq2 5599 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 2nd `  v )  =  ( 2nd `  t
) )
3230, 31oveqan12d 5986 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  C
) N ( 2nd `  t ) ) )
3329, 32preq12d 3728 . . . . . . . 8  |-  ( ( u  =  C  /\  v  =  t )  ->  { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) }  =  { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } )
3433supeq1d 7115 . . . . . . 7  |-  ( ( u  =  C  /\  v  =  t )  ->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3534, 1ovmpoga 6098 . . . . . 6  |-  ( ( C  e.  ( X  X.  Y )  /\  t  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
369, 10, 26, 35syl3anc 1250 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3736breq1d 4069 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  < 
R ) )
386adantr 276 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  R  e.  RR* )
39 xrmaxltsup 11684 . . . . 5  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR*  /\  R  e.  RR* )  ->  ( sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4017, 24, 38, 39syl3anc 1250 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( sup ( { ( ( 1st `  C ) M ( 1st `  t
) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4137, 40bitrd 188 . . 3  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  ( (
( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) ) )
4241rabbidva 2764 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( C P t )  <  R }  =  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) } )
43 1st2nd2 6284 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
4443ad2antrl 490 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
45 xp1st 6274 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 1st `  n )  e.  X )
4645ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  X )
47 simprrl 539 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
485, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  C
)  e.  X )
49 elbl 14978 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  R  e.  RR* )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
502, 48, 6, 49syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5150adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5246, 47, 51mpbir2and 947 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
53 xp2nd 6275 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 2nd `  n )  e.  Y )
5453ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  Y )
55 simprrr 540 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
565, 19syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  C
)  e.  Y )
57 elbl 14978 . . . . . . . . 9  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  R  e.  RR* )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
583, 56, 6, 57syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
5958adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6054, 55, 59mpbir2and 947 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6144, 52, 60jca32 310 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
62 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
63 simprrl 539 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
6450adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
6563, 64mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  X  /\  ( ( 1st `  C
) M ( 1st `  n ) )  < 
R ) )
6665simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  X )
67 simprrr 540 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6858adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6967, 68mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  Y  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) )
7069simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  Y )
7162, 66, 70jca32 310 . . . . . . 7  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  X  /\  ( 2nd `  n )  e.  Y
) ) )
72 elxp6 6278 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  X  /\  ( 2nd `  n )  e.  Y ) ) )
7371, 72sylibr 134 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  e.  ( X  X.  Y ) )
7465simprd 114 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
7569simprd 114 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
7673, 74, 75jca32 310 . . . . 5  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  e.  ( X  X.  Y )  /\  ( ( ( 1st `  C ) M ( 1st `  n
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) ) )
7761, 76impbida 596 . . . 4  |-  ( ph  ->  ( ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) ) )
78 fveq2 5599 . . . . . . . 8  |-  ( t  =  n  ->  ( 1st `  t )  =  ( 1st `  n
) )
7978oveq2d 5983 . . . . . . 7  |-  ( t  =  n  ->  (
( 1st `  C
) M ( 1st `  t ) )  =  ( ( 1st `  C
) M ( 1st `  n ) ) )
8079breq1d 4069 . . . . . 6  |-  ( t  =  n  ->  (
( ( 1st `  C
) M ( 1st `  t ) )  < 
R  <->  ( ( 1st `  C ) M ( 1st `  n ) )  <  R ) )
81 fveq2 5599 . . . . . . . 8  |-  ( t  =  n  ->  ( 2nd `  t )  =  ( 2nd `  n
) )
8281oveq2d 5983 . . . . . . 7  |-  ( t  =  n  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  =  ( ( 2nd `  C
) N ( 2nd `  n ) ) )
8382breq1d 4069 . . . . . 6  |-  ( t  =  n  ->  (
( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R  <->  ( ( 2nd `  C ) N ( 2nd `  n ) )  <  R ) )
8480, 83anbi12d 473 . . . . 5  |-  ( t  =  n  ->  (
( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R )  <->  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
8584elrab 2936 . . . 4  |-  ( n  e.  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) }  <->  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
86 elxp6 6278 . . . 4  |-  ( n  e.  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) )  <-> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8777, 85, 863bitr4g 223 . . 3  |-  ( ph  ->  ( n  e.  {
t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  <->  n  e.  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8887eqrdv 2205 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) )
898, 42, 883eqtrd 2244 1  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490   {cpr 3644   <.cop 3646   class class class wbr 4059    X. cxp 4691   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248   supcsup 7110   RR*cxr 8141    < clt 8142   *Metcxmet 14413   ballcbl 14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630
This theorem is referenced by:  xmettxlem  15096  xmettx  15097
  Copyright terms: Public domain W3C validator