Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetxpbl | Unicode version |
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point with radius . (Contributed by Jim Kingdon, 22-Oct-2023.) |
Ref | Expression |
---|---|
xmetxp.p | |
xmetxp.1 | |
xmetxp.2 | |
xmetxpbl.r | |
xmetxpbl.c |
Ref | Expression |
---|---|
xmetxpbl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetxp.p | . . . 4 | |
2 | xmetxp.1 | . . . 4 | |
3 | xmetxp.2 | . . . 4 | |
4 | 1, 2, 3 | xmetxp 12867 | . . 3 |
5 | xmetxpbl.c | . . 3 | |
6 | xmetxpbl.r | . . 3 | |
7 | blval 12749 | . . 3 | |
8 | 4, 5, 6, 7 | syl3anc 1220 | . 2 |
9 | 5 | adantr 274 | . . . . . 6 |
10 | simpr 109 | . . . . . 6 | |
11 | 2 | adantr 274 | . . . . . . . 8 |
12 | xp1st 6107 | . . . . . . . . 9 | |
13 | 9, 12 | syl 14 | . . . . . . . 8 |
14 | xp1st 6107 | . . . . . . . . 9 | |
15 | 14 | adantl 275 | . . . . . . . 8 |
16 | xmetcl 12712 | . . . . . . . 8 | |
17 | 11, 13, 15, 16 | syl3anc 1220 | . . . . . . 7 |
18 | 3 | adantr 274 | . . . . . . . 8 |
19 | xp2nd 6108 | . . . . . . . . 9 | |
20 | 9, 19 | syl 14 | . . . . . . . 8 |
21 | xp2nd 6108 | . . . . . . . . 9 | |
22 | 21 | adantl 275 | . . . . . . . 8 |
23 | xmetcl 12712 | . . . . . . . 8 | |
24 | 18, 20, 22, 23 | syl3anc 1220 | . . . . . . 7 |
25 | xrmaxcl 11131 | . . . . . . 7 | |
26 | 17, 24, 25 | syl2anc 409 | . . . . . 6 |
27 | fveq2 5465 | . . . . . . . . . 10 | |
28 | fveq2 5465 | . . . . . . . . . 10 | |
29 | 27, 28 | oveqan12d 5837 | . . . . . . . . 9 |
30 | fveq2 5465 | . . . . . . . . . 10 | |
31 | fveq2 5465 | . . . . . . . . . 10 | |
32 | 30, 31 | oveqan12d 5837 | . . . . . . . . 9 |
33 | 29, 32 | preq12d 3644 | . . . . . . . 8 |
34 | 33 | supeq1d 6923 | . . . . . . 7 |
35 | 34, 1 | ovmpoga 5944 | . . . . . 6 |
36 | 9, 10, 26, 35 | syl3anc 1220 | . . . . 5 |
37 | 36 | breq1d 3975 | . . . 4 |
38 | 6 | adantr 274 | . . . . 5 |
39 | xrmaxltsup 11137 | . . . . 5 | |
40 | 17, 24, 38, 39 | syl3anc 1220 | . . . 4 |
41 | 37, 40 | bitrd 187 | . . 3 |
42 | 41 | rabbidva 2700 | . 2 |
43 | 1st2nd2 6117 | . . . . . . 7 | |
44 | 43 | ad2antrl 482 | . . . . . 6 |
45 | xp1st 6107 | . . . . . . . 8 | |
46 | 45 | ad2antrl 482 | . . . . . . 7 |
47 | simprrl 529 | . . . . . . 7 | |
48 | 5, 12 | syl 14 | . . . . . . . . 9 |
49 | elbl 12751 | . . . . . . . . 9 | |
50 | 2, 48, 6, 49 | syl3anc 1220 | . . . . . . . 8 |
51 | 50 | adantr 274 | . . . . . . 7 |
52 | 46, 47, 51 | mpbir2and 929 | . . . . . 6 |
53 | xp2nd 6108 | . . . . . . . 8 | |
54 | 53 | ad2antrl 482 | . . . . . . 7 |
55 | simprrr 530 | . . . . . . 7 | |
56 | 5, 19 | syl 14 | . . . . . . . . 9 |
57 | elbl 12751 | . . . . . . . . 9 | |
58 | 3, 56, 6, 57 | syl3anc 1220 | . . . . . . . 8 |
59 | 58 | adantr 274 | . . . . . . 7 |
60 | 54, 55, 59 | mpbir2and 929 | . . . . . 6 |
61 | 44, 52, 60 | jca32 308 | . . . . 5 |
62 | simprl 521 | . . . . . . . 8 | |
63 | simprrl 529 | . . . . . . . . . 10 | |
64 | 50 | adantr 274 | . . . . . . . . . 10 |
65 | 63, 64 | mpbid 146 | . . . . . . . . 9 |
66 | 65 | simpld 111 | . . . . . . . 8 |
67 | simprrr 530 | . . . . . . . . . 10 | |
68 | 58 | adantr 274 | . . . . . . . . . 10 |
69 | 67, 68 | mpbid 146 | . . . . . . . . 9 |
70 | 69 | simpld 111 | . . . . . . . 8 |
71 | 62, 66, 70 | jca32 308 | . . . . . . 7 |
72 | elxp6 6111 | . . . . . . 7 | |
73 | 71, 72 | sylibr 133 | . . . . . 6 |
74 | 65 | simprd 113 | . . . . . 6 |
75 | 69 | simprd 113 | . . . . . 6 |
76 | 73, 74, 75 | jca32 308 | . . . . 5 |
77 | 61, 76 | impbida 586 | . . . 4 |
78 | fveq2 5465 | . . . . . . . 8 | |
79 | 78 | oveq2d 5834 | . . . . . . 7 |
80 | 79 | breq1d 3975 | . . . . . 6 |
81 | fveq2 5465 | . . . . . . . 8 | |
82 | 81 | oveq2d 5834 | . . . . . . 7 |
83 | 82 | breq1d 3975 | . . . . . 6 |
84 | 80, 83 | anbi12d 465 | . . . . 5 |
85 | 84 | elrab 2868 | . . . 4 |
86 | elxp6 6111 | . . . 4 | |
87 | 77, 85, 86 | 3bitr4g 222 | . . 3 |
88 | 87 | eqrdv 2155 | . 2 |
89 | 8, 42, 88 | 3eqtrd 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 crab 2439 cpr 3561 cop 3563 class class class wbr 3965 cxp 4581 cfv 5167 (class class class)co 5818 cmpo 5820 c1st 6080 c2nd 6081 csup 6918 cxr 7894 clt 7895 cxmet 12340 cbl 12342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 ax-caucvg 7835 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-isom 5176 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-frec 6332 df-map 6588 df-sup 6920 df-inf 6921 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 df-uz 9423 df-q 9511 df-rp 9543 df-xneg 9661 df-xadd 9662 df-seqfrec 10327 df-exp 10401 df-cj 10724 df-re 10725 df-im 10726 df-rsqrt 10880 df-abs 10881 df-topgen 12332 df-psmet 12347 df-xmet 12348 df-bl 12350 df-mopn 12351 df-top 12356 df-topon 12369 df-bases 12401 |
This theorem is referenced by: xmettxlem 12869 xmettx 12870 |
Copyright terms: Public domain | W3C validator |