| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetxpbl | Unicode version | ||
| Description: The maximum metric
(Chebyshev distance) on the product of two sets,
expressed in terms of balls centered on a point |
| Ref | Expression |
|---|---|
| xmetxp.p |
|
| xmetxp.1 |
|
| xmetxp.2 |
|
| xmetxpbl.r |
|
| xmetxpbl.c |
|
| Ref | Expression |
|---|---|
| xmetxpbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetxp.p |
. . . 4
| |
| 2 | xmetxp.1 |
. . . 4
| |
| 3 | xmetxp.2 |
. . . 4
| |
| 4 | 1, 2, 3 | xmetxp 14979 |
. . 3
|
| 5 | xmetxpbl.c |
. . 3
| |
| 6 | xmetxpbl.r |
. . 3
| |
| 7 | blval 14861 |
. . 3
| |
| 8 | 4, 5, 6, 7 | syl3anc 1250 |
. 2
|
| 9 | 5 | adantr 276 |
. . . . . 6
|
| 10 | simpr 110 |
. . . . . 6
| |
| 11 | 2 | adantr 276 |
. . . . . . . 8
|
| 12 | xp1st 6251 |
. . . . . . . . 9
| |
| 13 | 9, 12 | syl 14 |
. . . . . . . 8
|
| 14 | xp1st 6251 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 277 |
. . . . . . . 8
|
| 16 | xmetcl 14824 |
. . . . . . . 8
| |
| 17 | 11, 13, 15, 16 | syl3anc 1250 |
. . . . . . 7
|
| 18 | 3 | adantr 276 |
. . . . . . . 8
|
| 19 | xp2nd 6252 |
. . . . . . . . 9
| |
| 20 | 9, 19 | syl 14 |
. . . . . . . 8
|
| 21 | xp2nd 6252 |
. . . . . . . . 9
| |
| 22 | 21 | adantl 277 |
. . . . . . . 8
|
| 23 | xmetcl 14824 |
. . . . . . . 8
| |
| 24 | 18, 20, 22, 23 | syl3anc 1250 |
. . . . . . 7
|
| 25 | xrmaxcl 11563 |
. . . . . . 7
| |
| 26 | 17, 24, 25 | syl2anc 411 |
. . . . . 6
|
| 27 | fveq2 5576 |
. . . . . . . . . 10
| |
| 28 | fveq2 5576 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | oveqan12d 5963 |
. . . . . . . . 9
|
| 30 | fveq2 5576 |
. . . . . . . . . 10
| |
| 31 | fveq2 5576 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | oveqan12d 5963 |
. . . . . . . . 9
|
| 33 | 29, 32 | preq12d 3718 |
. . . . . . . 8
|
| 34 | 33 | supeq1d 7089 |
. . . . . . 7
|
| 35 | 34, 1 | ovmpoga 6075 |
. . . . . 6
|
| 36 | 9, 10, 26, 35 | syl3anc 1250 |
. . . . 5
|
| 37 | 36 | breq1d 4054 |
. . . 4
|
| 38 | 6 | adantr 276 |
. . . . 5
|
| 39 | xrmaxltsup 11569 |
. . . . 5
| |
| 40 | 17, 24, 38, 39 | syl3anc 1250 |
. . . 4
|
| 41 | 37, 40 | bitrd 188 |
. . 3
|
| 42 | 41 | rabbidva 2760 |
. 2
|
| 43 | 1st2nd2 6261 |
. . . . . . 7
| |
| 44 | 43 | ad2antrl 490 |
. . . . . 6
|
| 45 | xp1st 6251 |
. . . . . . . 8
| |
| 46 | 45 | ad2antrl 490 |
. . . . . . 7
|
| 47 | simprrl 539 |
. . . . . . 7
| |
| 48 | 5, 12 | syl 14 |
. . . . . . . . 9
|
| 49 | elbl 14863 |
. . . . . . . . 9
| |
| 50 | 2, 48, 6, 49 | syl3anc 1250 |
. . . . . . . 8
|
| 51 | 50 | adantr 276 |
. . . . . . 7
|
| 52 | 46, 47, 51 | mpbir2and 947 |
. . . . . 6
|
| 53 | xp2nd 6252 |
. . . . . . . 8
| |
| 54 | 53 | ad2antrl 490 |
. . . . . . 7
|
| 55 | simprrr 540 |
. . . . . . 7
| |
| 56 | 5, 19 | syl 14 |
. . . . . . . . 9
|
| 57 | elbl 14863 |
. . . . . . . . 9
| |
| 58 | 3, 56, 6, 57 | syl3anc 1250 |
. . . . . . . 8
|
| 59 | 58 | adantr 276 |
. . . . . . 7
|
| 60 | 54, 55, 59 | mpbir2and 947 |
. . . . . 6
|
| 61 | 44, 52, 60 | jca32 310 |
. . . . 5
|
| 62 | simprl 529 |
. . . . . . . 8
| |
| 63 | simprrl 539 |
. . . . . . . . . 10
| |
| 64 | 50 | adantr 276 |
. . . . . . . . . 10
|
| 65 | 63, 64 | mpbid 147 |
. . . . . . . . 9
|
| 66 | 65 | simpld 112 |
. . . . . . . 8
|
| 67 | simprrr 540 |
. . . . . . . . . 10
| |
| 68 | 58 | adantr 276 |
. . . . . . . . . 10
|
| 69 | 67, 68 | mpbid 147 |
. . . . . . . . 9
|
| 70 | 69 | simpld 112 |
. . . . . . . 8
|
| 71 | 62, 66, 70 | jca32 310 |
. . . . . . 7
|
| 72 | elxp6 6255 |
. . . . . . 7
| |
| 73 | 71, 72 | sylibr 134 |
. . . . . 6
|
| 74 | 65 | simprd 114 |
. . . . . 6
|
| 75 | 69 | simprd 114 |
. . . . . 6
|
| 76 | 73, 74, 75 | jca32 310 |
. . . . 5
|
| 77 | 61, 76 | impbida 596 |
. . . 4
|
| 78 | fveq2 5576 |
. . . . . . . 8
| |
| 79 | 78 | oveq2d 5960 |
. . . . . . 7
|
| 80 | 79 | breq1d 4054 |
. . . . . 6
|
| 81 | fveq2 5576 |
. . . . . . . 8
| |
| 82 | 81 | oveq2d 5960 |
. . . . . . 7
|
| 83 | 82 | breq1d 4054 |
. . . . . 6
|
| 84 | 80, 83 | anbi12d 473 |
. . . . 5
|
| 85 | 84 | elrab 2929 |
. . . 4
|
| 86 | elxp6 6255 |
. . . 4
| |
| 87 | 77, 85, 86 | 3bitr4g 223 |
. . 3
|
| 88 | 87 | eqrdv 2203 |
. 2
|
| 89 | 8, 42, 88 | 3eqtrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-map 6737 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-bl 14308 df-mopn 14309 df-top 14470 df-topon 14483 df-bases 14515 |
| This theorem is referenced by: xmettxlem 14981 xmettx 14982 |
| Copyright terms: Public domain | W3C validator |