ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl Unicode version

Theorem xmetxpbl 14828
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmetxpbl.r  |-  ( ph  ->  R  e.  RR* )
xmetxpbl.c  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
Assertion
Ref Expression
xmetxpbl  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Distinct variable groups:    u, C, v   
u, M, v    u, N, v    u, X, v   
u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    R( v, u)

Proof of Theorem xmetxpbl
Dummy variables  n  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . 4  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . 4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 14827 . . 3  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 xmetxpbl.c . . 3  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
6 xmetxpbl.r . . 3  |-  ( ph  ->  R  e.  RR* )
7 blval 14709 . . 3  |-  ( ( P  e.  ( *Met `  ( X  X.  Y ) )  /\  C  e.  ( X  X.  Y )  /\  R  e.  RR* )  ->  ( C (
ball `  P ) R )  =  {
t  e.  ( X  X.  Y )  |  ( C P t )  <  R }
)
84, 5, 6, 7syl3anc 1249 . 2  |-  ( ph  ->  ( C ( ball `  P ) R )  =  { t  e.  ( X  X.  Y
)  |  ( C P t )  < 
R } )
95adantr 276 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  C  e.  ( X  X.  Y
) )
10 simpr 110 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  t  e.  ( X  X.  Y
) )
112adantr 276 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  M  e.  ( *Met `  X ) )
12 xp1st 6232 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 1st `  C )  e.  X )
139, 12syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  C )  e.  X )
14 xp1st 6232 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 1st `  t )  e.  X )
1514adantl 277 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  t )  e.  X )
16 xmetcl 14672 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  ( 1st `  t )  e.  X )  -> 
( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
1711, 13, 15, 16syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
183adantr 276 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  N  e.  ( *Met `  Y ) )
19 xp2nd 6233 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 2nd `  C )  e.  Y )
209, 19syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  C )  e.  Y )
21 xp2nd 6233 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 2nd `  t )  e.  Y )
2221adantl 277 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  t )  e.  Y )
23 xmetcl 14672 . . . . . . . 8  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  ( 2nd `  t )  e.  Y )  -> 
( ( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
2418, 20, 22, 23syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
25 xrmaxcl 11434 . . . . . . 7  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR* )  ->  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  e.  RR* )
2617, 24, 25syl2anc 411 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )
27 fveq2 5561 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 1st `  u )  =  ( 1st `  C
) )
28 fveq2 5561 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 1st `  v )  =  ( 1st `  t
) )
2927, 28oveqan12d 5944 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  C
) M ( 1st `  t ) ) )
30 fveq2 5561 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 2nd `  u )  =  ( 2nd `  C
) )
31 fveq2 5561 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 2nd `  v )  =  ( 2nd `  t
) )
3230, 31oveqan12d 5944 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  C
) N ( 2nd `  t ) ) )
3329, 32preq12d 3708 . . . . . . . 8  |-  ( ( u  =  C  /\  v  =  t )  ->  { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) }  =  { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } )
3433supeq1d 7062 . . . . . . 7  |-  ( ( u  =  C  /\  v  =  t )  ->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3534, 1ovmpoga 6056 . . . . . 6  |-  ( ( C  e.  ( X  X.  Y )  /\  t  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
369, 10, 26, 35syl3anc 1249 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3736breq1d 4044 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  < 
R ) )
386adantr 276 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  R  e.  RR* )
39 xrmaxltsup 11440 . . . . 5  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR*  /\  R  e.  RR* )  ->  ( sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4017, 24, 38, 39syl3anc 1249 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( sup ( { ( ( 1st `  C ) M ( 1st `  t
) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4137, 40bitrd 188 . . 3  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  ( (
( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) ) )
4241rabbidva 2751 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( C P t )  <  R }  =  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) } )
43 1st2nd2 6242 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
4443ad2antrl 490 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
45 xp1st 6232 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 1st `  n )  e.  X )
4645ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  X )
47 simprrl 539 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
485, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  C
)  e.  X )
49 elbl 14711 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  R  e.  RR* )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
502, 48, 6, 49syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5150adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5246, 47, 51mpbir2and 946 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
53 xp2nd 6233 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 2nd `  n )  e.  Y )
5453ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  Y )
55 simprrr 540 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
565, 19syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  C
)  e.  Y )
57 elbl 14711 . . . . . . . . 9  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  R  e.  RR* )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
583, 56, 6, 57syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
5958adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6054, 55, 59mpbir2and 946 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6144, 52, 60jca32 310 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
62 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
63 simprrl 539 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
6450adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
6563, 64mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  X  /\  ( ( 1st `  C
) M ( 1st `  n ) )  < 
R ) )
6665simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  X )
67 simprrr 540 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6858adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6967, 68mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  Y  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) )
7069simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  Y )
7162, 66, 70jca32 310 . . . . . . 7  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  X  /\  ( 2nd `  n )  e.  Y
) ) )
72 elxp6 6236 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  X  /\  ( 2nd `  n )  e.  Y ) ) )
7371, 72sylibr 134 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  e.  ( X  X.  Y ) )
7465simprd 114 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
7569simprd 114 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
7673, 74, 75jca32 310 . . . . 5  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  e.  ( X  X.  Y )  /\  ( ( ( 1st `  C ) M ( 1st `  n
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) ) )
7761, 76impbida 596 . . . 4  |-  ( ph  ->  ( ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) ) )
78 fveq2 5561 . . . . . . . 8  |-  ( t  =  n  ->  ( 1st `  t )  =  ( 1st `  n
) )
7978oveq2d 5941 . . . . . . 7  |-  ( t  =  n  ->  (
( 1st `  C
) M ( 1st `  t ) )  =  ( ( 1st `  C
) M ( 1st `  n ) ) )
8079breq1d 4044 . . . . . 6  |-  ( t  =  n  ->  (
( ( 1st `  C
) M ( 1st `  t ) )  < 
R  <->  ( ( 1st `  C ) M ( 1st `  n ) )  <  R ) )
81 fveq2 5561 . . . . . . . 8  |-  ( t  =  n  ->  ( 2nd `  t )  =  ( 2nd `  n
) )
8281oveq2d 5941 . . . . . . 7  |-  ( t  =  n  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  =  ( ( 2nd `  C
) N ( 2nd `  n ) ) )
8382breq1d 4044 . . . . . 6  |-  ( t  =  n  ->  (
( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R  <->  ( ( 2nd `  C ) N ( 2nd `  n ) )  <  R ) )
8480, 83anbi12d 473 . . . . 5  |-  ( t  =  n  ->  (
( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R )  <->  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
8584elrab 2920 . . . 4  |-  ( n  e.  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) }  <->  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
86 elxp6 6236 . . . 4  |-  ( n  e.  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) )  <-> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8777, 85, 863bitr4g 223 . . 3  |-  ( ph  ->  ( n  e.  {
t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  <->  n  e.  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8887eqrdv 2194 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) )
898, 42, 883eqtrd 2233 1  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   {cpr 3624   <.cop 3626   class class class wbr 4034    X. cxp 4662   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   supcsup 7057   RR*cxr 8077    < clt 8078   *Metcxmet 14168   ballcbl 14170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363
This theorem is referenced by:  xmettxlem  14829  xmettx  14830
  Copyright terms: Public domain W3C validator