| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetxpbl | Unicode version | ||
| Description: The maximum metric
(Chebyshev distance) on the product of two sets,
expressed in terms of balls centered on a point |
| Ref | Expression |
|---|---|
| xmetxp.p |
|
| xmetxp.1 |
|
| xmetxp.2 |
|
| xmetxpbl.r |
|
| xmetxpbl.c |
|
| Ref | Expression |
|---|---|
| xmetxpbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetxp.p |
. . . 4
| |
| 2 | xmetxp.1 |
. . . 4
| |
| 3 | xmetxp.2 |
. . . 4
| |
| 4 | 1, 2, 3 | xmetxp 14827 |
. . 3
|
| 5 | xmetxpbl.c |
. . 3
| |
| 6 | xmetxpbl.r |
. . 3
| |
| 7 | blval 14709 |
. . 3
| |
| 8 | 4, 5, 6, 7 | syl3anc 1249 |
. 2
|
| 9 | 5 | adantr 276 |
. . . . . 6
|
| 10 | simpr 110 |
. . . . . 6
| |
| 11 | 2 | adantr 276 |
. . . . . . . 8
|
| 12 | xp1st 6232 |
. . . . . . . . 9
| |
| 13 | 9, 12 | syl 14 |
. . . . . . . 8
|
| 14 | xp1st 6232 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 277 |
. . . . . . . 8
|
| 16 | xmetcl 14672 |
. . . . . . . 8
| |
| 17 | 11, 13, 15, 16 | syl3anc 1249 |
. . . . . . 7
|
| 18 | 3 | adantr 276 |
. . . . . . . 8
|
| 19 | xp2nd 6233 |
. . . . . . . . 9
| |
| 20 | 9, 19 | syl 14 |
. . . . . . . 8
|
| 21 | xp2nd 6233 |
. . . . . . . . 9
| |
| 22 | 21 | adantl 277 |
. . . . . . . 8
|
| 23 | xmetcl 14672 |
. . . . . . . 8
| |
| 24 | 18, 20, 22, 23 | syl3anc 1249 |
. . . . . . 7
|
| 25 | xrmaxcl 11434 |
. . . . . . 7
| |
| 26 | 17, 24, 25 | syl2anc 411 |
. . . . . 6
|
| 27 | fveq2 5561 |
. . . . . . . . . 10
| |
| 28 | fveq2 5561 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | oveqan12d 5944 |
. . . . . . . . 9
|
| 30 | fveq2 5561 |
. . . . . . . . . 10
| |
| 31 | fveq2 5561 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | oveqan12d 5944 |
. . . . . . . . 9
|
| 33 | 29, 32 | preq12d 3708 |
. . . . . . . 8
|
| 34 | 33 | supeq1d 7062 |
. . . . . . 7
|
| 35 | 34, 1 | ovmpoga 6056 |
. . . . . 6
|
| 36 | 9, 10, 26, 35 | syl3anc 1249 |
. . . . 5
|
| 37 | 36 | breq1d 4044 |
. . . 4
|
| 38 | 6 | adantr 276 |
. . . . 5
|
| 39 | xrmaxltsup 11440 |
. . . . 5
| |
| 40 | 17, 24, 38, 39 | syl3anc 1249 |
. . . 4
|
| 41 | 37, 40 | bitrd 188 |
. . 3
|
| 42 | 41 | rabbidva 2751 |
. 2
|
| 43 | 1st2nd2 6242 |
. . . . . . 7
| |
| 44 | 43 | ad2antrl 490 |
. . . . . 6
|
| 45 | xp1st 6232 |
. . . . . . . 8
| |
| 46 | 45 | ad2antrl 490 |
. . . . . . 7
|
| 47 | simprrl 539 |
. . . . . . 7
| |
| 48 | 5, 12 | syl 14 |
. . . . . . . . 9
|
| 49 | elbl 14711 |
. . . . . . . . 9
| |
| 50 | 2, 48, 6, 49 | syl3anc 1249 |
. . . . . . . 8
|
| 51 | 50 | adantr 276 |
. . . . . . 7
|
| 52 | 46, 47, 51 | mpbir2and 946 |
. . . . . 6
|
| 53 | xp2nd 6233 |
. . . . . . . 8
| |
| 54 | 53 | ad2antrl 490 |
. . . . . . 7
|
| 55 | simprrr 540 |
. . . . . . 7
| |
| 56 | 5, 19 | syl 14 |
. . . . . . . . 9
|
| 57 | elbl 14711 |
. . . . . . . . 9
| |
| 58 | 3, 56, 6, 57 | syl3anc 1249 |
. . . . . . . 8
|
| 59 | 58 | adantr 276 |
. . . . . . 7
|
| 60 | 54, 55, 59 | mpbir2and 946 |
. . . . . 6
|
| 61 | 44, 52, 60 | jca32 310 |
. . . . 5
|
| 62 | simprl 529 |
. . . . . . . 8
| |
| 63 | simprrl 539 |
. . . . . . . . . 10
| |
| 64 | 50 | adantr 276 |
. . . . . . . . . 10
|
| 65 | 63, 64 | mpbid 147 |
. . . . . . . . 9
|
| 66 | 65 | simpld 112 |
. . . . . . . 8
|
| 67 | simprrr 540 |
. . . . . . . . . 10
| |
| 68 | 58 | adantr 276 |
. . . . . . . . . 10
|
| 69 | 67, 68 | mpbid 147 |
. . . . . . . . 9
|
| 70 | 69 | simpld 112 |
. . . . . . . 8
|
| 71 | 62, 66, 70 | jca32 310 |
. . . . . . 7
|
| 72 | elxp6 6236 |
. . . . . . 7
| |
| 73 | 71, 72 | sylibr 134 |
. . . . . 6
|
| 74 | 65 | simprd 114 |
. . . . . 6
|
| 75 | 69 | simprd 114 |
. . . . . 6
|
| 76 | 73, 74, 75 | jca32 310 |
. . . . 5
|
| 77 | 61, 76 | impbida 596 |
. . . 4
|
| 78 | fveq2 5561 |
. . . . . . . 8
| |
| 79 | 78 | oveq2d 5941 |
. . . . . . 7
|
| 80 | 79 | breq1d 4044 |
. . . . . 6
|
| 81 | fveq2 5561 |
. . . . . . . 8
| |
| 82 | 81 | oveq2d 5941 |
. . . . . . 7
|
| 83 | 82 | breq1d 4044 |
. . . . . 6
|
| 84 | 80, 83 | anbi12d 473 |
. . . . 5
|
| 85 | 84 | elrab 2920 |
. . . 4
|
| 86 | elxp6 6236 |
. . . 4
| |
| 87 | 77, 85, 86 | 3bitr4g 223 |
. . 3
|
| 88 | 87 | eqrdv 2194 |
. 2
|
| 89 | 8, 42, 88 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 |
| This theorem is referenced by: xmettxlem 14829 xmettx 14830 |
| Copyright terms: Public domain | W3C validator |