ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl Unicode version

Theorem xmetxpbl 14011
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmetxpbl.r  |-  ( ph  ->  R  e.  RR* )
xmetxpbl.c  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
Assertion
Ref Expression
xmetxpbl  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Distinct variable groups:    u, C, v   
u, M, v    u, N, v    u, X, v   
u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    R( v, u)

Proof of Theorem xmetxpbl
Dummy variables  n  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . 4  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . 4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 14010 . . 3  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 xmetxpbl.c . . 3  |-  ( ph  ->  C  e.  ( X  X.  Y ) )
6 xmetxpbl.r . . 3  |-  ( ph  ->  R  e.  RR* )
7 blval 13892 . . 3  |-  ( ( P  e.  ( *Met `  ( X  X.  Y ) )  /\  C  e.  ( X  X.  Y )  /\  R  e.  RR* )  ->  ( C (
ball `  P ) R )  =  {
t  e.  ( X  X.  Y )  |  ( C P t )  <  R }
)
84, 5, 6, 7syl3anc 1238 . 2  |-  ( ph  ->  ( C ( ball `  P ) R )  =  { t  e.  ( X  X.  Y
)  |  ( C P t )  < 
R } )
95adantr 276 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  C  e.  ( X  X.  Y
) )
10 simpr 110 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  t  e.  ( X  X.  Y
) )
112adantr 276 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  M  e.  ( *Met `  X ) )
12 xp1st 6166 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 1st `  C )  e.  X )
139, 12syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  C )  e.  X )
14 xp1st 6166 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 1st `  t )  e.  X )
1514adantl 277 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 1st `  t )  e.  X )
16 xmetcl 13855 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  ( 1st `  t )  e.  X )  -> 
( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
1711, 13, 15, 16syl3anc 1238 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 1st `  C
) M ( 1st `  t ) )  e. 
RR* )
183adantr 276 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  N  e.  ( *Met `  Y ) )
19 xp2nd 6167 . . . . . . . . 9  |-  ( C  e.  ( X  X.  Y )  ->  ( 2nd `  C )  e.  Y )
209, 19syl 14 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  C )  e.  Y )
21 xp2nd 6167 . . . . . . . . 9  |-  ( t  e.  ( X  X.  Y )  ->  ( 2nd `  t )  e.  Y )
2221adantl 277 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( 2nd `  t )  e.  Y )
23 xmetcl 13855 . . . . . . . 8  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  ( 2nd `  t )  e.  Y )  -> 
( ( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
2418, 20, 22, 23syl3anc 1238 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  e. 
RR* )
25 xrmaxcl 11260 . . . . . . 7  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR* )  ->  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  e.  RR* )
2617, 24, 25syl2anc 411 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )
27 fveq2 5516 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 1st `  u )  =  ( 1st `  C
) )
28 fveq2 5516 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 1st `  v )  =  ( 1st `  t
) )
2927, 28oveqan12d 5894 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  C
) M ( 1st `  t ) ) )
30 fveq2 5516 . . . . . . . . . 10  |-  ( u  =  C  ->  ( 2nd `  u )  =  ( 2nd `  C
) )
31 fveq2 5516 . . . . . . . . . 10  |-  ( v  =  t  ->  ( 2nd `  v )  =  ( 2nd `  t
) )
3230, 31oveqan12d 5894 . . . . . . . . 9  |-  ( ( u  =  C  /\  v  =  t )  ->  ( ( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  C
) N ( 2nd `  t ) ) )
3329, 32preq12d 3678 . . . . . . . 8  |-  ( ( u  =  C  /\  v  =  t )  ->  { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) }  =  { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } )
3433supeq1d 6986 . . . . . . 7  |-  ( ( u  =  C  /\  v  =  t )  ->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3534, 1ovmpoga 6004 . . . . . 6  |-  ( ( C  e.  ( X  X.  Y )  /\  t  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
369, 10, 26, 35syl3anc 1238 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( C P t )  =  sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )
)
3736breq1d 4014 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  sup ( { ( ( 1st `  C ) M ( 1st `  t ) ) ,  ( ( 2nd `  C ) N ( 2nd `  t
) ) } ,  RR* ,  <  )  < 
R ) )
386adantr 276 . . . . 5  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  R  e.  RR* )
39 xrmaxltsup 11266 . . . . 5  |-  ( ( ( ( 1st `  C
) M ( 1st `  t ) )  e. 
RR*  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  e.  RR*  /\  R  e.  RR* )  ->  ( sup ( { ( ( 1st `  C
) M ( 1st `  t ) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4017, 24, 38, 39syl3anc 1238 . . . 4  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  ( sup ( { ( ( 1st `  C ) M ( 1st `  t
) ) ,  ( ( 2nd `  C
) N ( 2nd `  t ) ) } ,  RR* ,  <  )  <  R  <->  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) ) )
4137, 40bitrd 188 . . 3  |-  ( (
ph  /\  t  e.  ( X  X.  Y
) )  ->  (
( C P t )  <  R  <->  ( (
( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) ) )
4241rabbidva 2726 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( C P t )  <  R }  =  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) } )
43 1st2nd2 6176 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  ->  n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >. )
4443ad2antrl 490 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
45 xp1st 6166 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 1st `  n )  e.  X )
4645ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  X )
47 simprrl 539 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
485, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  C
)  e.  X )
49 elbl 13894 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  C
)  e.  X  /\  R  e.  RR* )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
502, 48, 6, 49syl3anc 1238 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5150adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
5246, 47, 51mpbir2and 944 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
53 xp2nd 6167 . . . . . . . 8  |-  ( n  e.  ( X  X.  Y )  ->  ( 2nd `  n )  e.  Y )
5453ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  Y )
55 simprrr 540 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
565, 19syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  C
)  e.  Y )
57 elbl 13894 . . . . . . . . 9  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  C
)  e.  Y  /\  R  e.  RR* )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
583, 56, 6, 57syl3anc 1238 . . . . . . . 8  |-  ( ph  ->  ( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
5958adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6054, 55, 59mpbir2and 944 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6144, 52, 60jca32 310 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
62 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  =  <. ( 1st `  n ) ,  ( 2nd `  n )
>. )
63 simprrl 539 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R ) )
6450adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  <->  ( ( 1st `  n )  e.  X  /\  ( ( 1st `  C ) M ( 1st `  n
) )  <  R
) ) )
6563, 64mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  n
)  e.  X  /\  ( ( 1st `  C
) M ( 1st `  n ) )  < 
R ) )
6665simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 1st `  n
)  e.  X )
67 simprrr 540 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R ) )
6858adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  ( ( 2nd `  C ) ( ball `  N
) R )  <->  ( ( 2nd `  n )  e.  Y  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
6967, 68mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  n
)  e.  Y  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) )
7069simpld 112 . . . . . . . 8  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( 2nd `  n
)  e.  Y )
7162, 66, 70jca32 310 . . . . . . 7  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  X  /\  ( 2nd `  n )  e.  Y
) ) )
72 elxp6 6170 . . . . . . 7  |-  ( n  e.  ( X  X.  Y )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  X  /\  ( 2nd `  n )  e.  Y ) ) )
7371, 72sylibr 134 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  ->  n  e.  ( X  X.  Y ) )
7465simprd 114 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 1st `  C
) M ( 1st `  n ) )  < 
R )
7569simprd 114 . . . . . 6  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R )
7673, 74, 75jca32 310 . . . . 5  |-  ( (
ph  /\  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )  -> 
( n  e.  ( X  X.  Y )  /\  ( ( ( 1st `  C ) M ( 1st `  n
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  n ) )  < 
R ) ) )
7761, 76impbida 596 . . . 4  |-  ( ph  ->  ( ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) )  <->  ( n  =  <. ( 1st `  n
) ,  ( 2nd `  n ) >.  /\  (
( 1st `  n
)  e.  ( ( 1st `  C ) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) ) )
78 fveq2 5516 . . . . . . . 8  |-  ( t  =  n  ->  ( 1st `  t )  =  ( 1st `  n
) )
7978oveq2d 5891 . . . . . . 7  |-  ( t  =  n  ->  (
( 1st `  C
) M ( 1st `  t ) )  =  ( ( 1st `  C
) M ( 1st `  n ) ) )
8079breq1d 4014 . . . . . 6  |-  ( t  =  n  ->  (
( ( 1st `  C
) M ( 1st `  t ) )  < 
R  <->  ( ( 1st `  C ) M ( 1st `  n ) )  <  R ) )
81 fveq2 5516 . . . . . . . 8  |-  ( t  =  n  ->  ( 2nd `  t )  =  ( 2nd `  n
) )
8281oveq2d 5891 . . . . . . 7  |-  ( t  =  n  ->  (
( 2nd `  C
) N ( 2nd `  t ) )  =  ( ( 2nd `  C
) N ( 2nd `  n ) ) )
8382breq1d 4014 . . . . . 6  |-  ( t  =  n  ->  (
( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R  <->  ( ( 2nd `  C ) N ( 2nd `  n ) )  <  R ) )
8480, 83anbi12d 473 . . . . 5  |-  ( t  =  n  ->  (
( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R )  <->  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
8584elrab 2894 . . . 4  |-  ( n  e.  { t  e.  ( X  X.  Y
)  |  ( ( ( 1st `  C
) M ( 1st `  t ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  t
) )  <  R
) }  <->  ( n  e.  ( X  X.  Y
)  /\  ( (
( 1st `  C
) M ( 1st `  n ) )  < 
R  /\  ( ( 2nd `  C ) N ( 2nd `  n
) )  <  R
) ) )
86 elxp6 6170 . . . 4  |-  ( n  e.  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) )  <-> 
( n  =  <. ( 1st `  n ) ,  ( 2nd `  n
) >.  /\  ( ( 1st `  n )  e.  ( ( 1st `  C
) ( ball `  M
) R )  /\  ( 2nd `  n )  e.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8777, 85, 863bitr4g 223 . . 3  |-  ( ph  ->  ( n  e.  {
t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t ) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  <->  n  e.  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) ) )
8887eqrdv 2175 . 2  |-  ( ph  ->  { t  e.  ( X  X.  Y )  |  ( ( ( 1st `  C ) M ( 1st `  t
) )  <  R  /\  ( ( 2nd `  C
) N ( 2nd `  t ) )  < 
R ) }  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  ( ( 2nd `  C ) ( ball `  N ) R ) ) )
898, 42, 883eqtrd 2214 1  |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M
) R )  X.  ( ( 2nd `  C
) ( ball `  N
) R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {crab 2459   {cpr 3594   <.cop 3596   class class class wbr 4004    X. cxp 4625   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   1stc1st 6139   2ndc2nd 6140   supcsup 6981   RR*cxr 7991    < clt 7992   *Metcxmet 13443   ballcbl 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546
This theorem is referenced by:  xmettxlem  14012  xmettx  14013
  Copyright terms: Public domain W3C validator