ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcnp Unicode version

Theorem txmetcnp 12687
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
txmetcnp.4  |-  L  =  ( MetOpen `  E )
Assertion
Ref Expression
txmetcnp  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z
) ) ) )
Distinct variable groups:    v, u, w, z, F    u, J, v, w, z    u, K, v, w, z    u, X, v, w, z    u, Y, v, w, z    u, Z, v, w, z    u, A, v, w, z    u, C, v, w, z    u, D, v, w, z    u, B, v, w, z    u, E, v, w, z    w, L, z
Allowed substitution hints:    L( v, u)

Proof of Theorem txmetcnp
Dummy variables  t  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4  |-  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s ) ) ,  ( ( 2nd `  r ) D ( 2nd `  s
) ) } ,  RR* ,  <  ) )  =  ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
)
2 simp1 981 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  ->  C  e.  ( *Met `  X ) )
32adantr 274 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  C  e.  ( *Met `  X
) )
4 simp2 982 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  ->  D  e.  ( *Met `  Y ) )
54adantr 274 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  D  e.  ( *Met `  Y
) )
61, 3, 5xmetxp 12676 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
)  e.  ( *Met `  ( X  X.  Y ) ) )
7 simpl3 986 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  E  e.  ( *Met `  Z
) )
8 simprl 520 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  A  e.  X )
9 simprr 521 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  B  e.  Y )
108, 9opelxpd 4572 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  <. A ,  B >.  e.  ( X  X.  Y ) )
11 eqid 2139 . . . 4  |-  ( MetOpen `  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  =  (
MetOpen `  ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )
12 txmetcnp.4 . . . 4  |-  L  =  ( MetOpen `  E )
1311, 12metcnp 12681 . . 3  |-  ( ( ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
)  e.  ( *Met `  ( X  X.  Y ) )  /\  E  e.  ( *Met `  Z
)  /\  <. A ,  B >.  e.  ( X  X.  Y ) )  ->  ( F  e.  ( ( ( MetOpen `  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  CnP  L
) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. t  e.  ( X  X.  Y
) ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z ) ) ) )
146, 7, 10, 13syl3anc 1216 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( MetOpen `  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  CnP  L
) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. t  e.  ( X  X.  Y
) ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z ) ) ) )
15 metcn.2 . . . . . 6  |-  J  =  ( MetOpen `  C )
16 metcn.4 . . . . . 6  |-  K  =  ( MetOpen `  D )
171, 3, 5, 15, 16, 11xmettx 12679 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( MetOpen `  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  =  ( J  tX  K ) )
1817oveq1d 5789 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( ( MetOpen
`  ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  CnP  L
)  =  ( ( J  tX  K )  CnP  L ) )
1918fveq1d 5423 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( (
( MetOpen `  ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  CnP  L
) `  <. A ,  B >. )  =  ( ( ( J  tX  K )  CnP  L
) `  <. A ,  B >. ) )
2019eleq2d 2209 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( MetOpen `  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) )  CnP  L
) `  <. A ,  B >. )  <->  F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )
) )
21 oveq2 5782 . . . . . . . . 9  |-  ( t  =  <. u ,  v
>.  ->  ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  =  ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. ) )
2221breq1d 3939 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  <->  ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w ) )
23 fveq2 5421 . . . . . . . . . 10  |-  ( t  =  <. u ,  v
>.  ->  ( F `  t )  =  ( F `  <. u ,  v >. )
)
2423oveq2d 5790 . . . . . . . . 9  |-  ( t  =  <. u ,  v
>.  ->  ( ( F `
 <. A ,  B >. ) E ( F `
 t ) )  =  ( ( F `
 <. A ,  B >. ) E ( F `
 <. u ,  v
>. ) ) )
2524breq1d 3939 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z  <->  ( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >. )
)  <  z )
)
2622, 25imbi12d 233 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  ( ( (
<. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z )  <-> 
( ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z
) ) )
2726ralxp 4682 . . . . . 6  |-  ( A. t  e.  ( X  X.  Y ) ( (
<. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z )  <->  A. u  e.  X  A. v  e.  Y  ( ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z
) )
288ad4antr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  A  e.  X )
299ad4antr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  B  e.  Y )
3028, 29opelxpd 4572 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  <. A ,  B >.  e.  ( X  X.  Y ) )
31 simplr 519 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  u  e.  X )
32 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  v  e.  Y )
3331, 32opelxpd 4572 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  <. u ,  v >.  e.  ( X  X.  Y ) )
342ad5antr 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  C  e.  ( *Met `  X ) )
35 xmetf 12519 . . . . . . . . . . . . . . . 16  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
3634, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  C : ( X  X.  X ) --> RR* )
37 op1stg 6048 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( 1st `  <. A ,  B >. )  =  A )
3828, 29, 37syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 1st `  <. A ,  B >. )  =  A )
3938, 28eqeltrd 2216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 1st `  <. A ,  B >. )  e.  X )
40 op1stg 6048 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  X  /\  v  e.  Y )  ->  ( 1st `  <. u ,  v >. )  =  u )
4140adantll 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 1st `  <. u ,  v
>. )  =  u
)
4241, 31eqeltrd 2216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 1st `  <. u ,  v
>. )  e.  X
)
4336, 39, 42fovrnd 5915 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
)  e.  RR* )
444ad5antr 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  D  e.  ( *Met `  Y ) )
45 xmetf 12519 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( *Met `  Y )  ->  D : ( Y  X.  Y ) --> RR* )
4644, 45syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  D : ( Y  X.  Y ) --> RR* )
47 op2ndg 6049 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( 2nd `  <. A ,  B >. )  =  B )
4828, 29, 47syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 2nd `  <. A ,  B >. )  =  B )
4948, 29eqeltrd 2216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 2nd `  <. A ,  B >. )  e.  Y )
50 op2ndg 6049 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  X  /\  v  e.  Y )  ->  ( 2nd `  <. u ,  v >. )  =  v )
5150adantll 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 2nd `  <. u ,  v
>. )  =  v
)
5251, 32eqeltrd 2216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( 2nd `  <. u ,  v
>. )  e.  Y
)
5346, 49, 52fovrnd 5915 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
)  e.  RR* )
54 xrmaxcl 11021 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
)  e.  RR*  /\  (
( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
)  e.  RR* )  ->  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  )  e.  RR* )
5543, 53, 54syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v
>. ) ) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  )  e.  RR* )
56 fveq2 5421 . . . . . . . . . . . . . . . . 17  |-  ( r  =  <. A ,  B >.  ->  ( 1st `  r
)  =  ( 1st `  <. A ,  B >. ) )
57 fveq2 5421 . . . . . . . . . . . . . . . . 17  |-  ( s  =  <. u ,  v
>.  ->  ( 1st `  s
)  =  ( 1st `  <. u ,  v
>. ) )
5856, 57oveqan12d 5793 . . . . . . . . . . . . . . . 16  |-  ( ( r  =  <. A ,  B >.  /\  s  =  <. u ,  v >.
)  ->  ( ( 1st `  r ) C ( 1st `  s
) )  =  ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
) )
59 fveq2 5421 . . . . . . . . . . . . . . . . 17  |-  ( r  =  <. A ,  B >.  ->  ( 2nd `  r
)  =  ( 2nd `  <. A ,  B >. ) )
60 fveq2 5421 . . . . . . . . . . . . . . . . 17  |-  ( s  =  <. u ,  v
>.  ->  ( 2nd `  s
)  =  ( 2nd `  <. u ,  v
>. ) )
6159, 60oveqan12d 5793 . . . . . . . . . . . . . . . 16  |-  ( ( r  =  <. A ,  B >.  /\  s  =  <. u ,  v >.
)  ->  ( ( 2nd `  r ) D ( 2nd `  s
) )  =  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) )
6258, 61preq12d 3608 . . . . . . . . . . . . . . 15  |-  ( ( r  =  <. A ,  B >.  /\  s  =  <. u ,  v >.
)  ->  { (
( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) }  =  { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } )
6362supeq1d 6874 . . . . . . . . . . . . . 14  |-  ( ( r  =  <. A ,  B >.  /\  s  =  <. u ,  v >.
)  ->  sup ( { ( ( 1st `  r ) C ( 1st `  s ) ) ,  ( ( 2nd `  r ) D ( 2nd `  s
) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  ) )
6463, 1ovmpoga 5900 . . . . . . . . . . . . 13  |-  ( (
<. A ,  B >.  e.  ( X  X.  Y
)  /\  <. u ,  v >.  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  )  e.  RR* )  ->  ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  =  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v
>. ) ) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  ) )
6530, 33, 55, 64syl3anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  =  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v
>. ) ) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  ) )
6638, 41oveq12d 5792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
)  =  ( A C u ) )
6748, 51oveq12d 5792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
)  =  ( B D v ) )
6866, 67preq12d 3608 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v >. )
) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) }  =  {
( A C u ) ,  ( B D v ) } )
6968supeq1d 6874 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  sup ( { ( ( 1st `  <. A ,  B >. ) C ( 1st `  <. u ,  v
>. ) ) ,  ( ( 2nd `  <. A ,  B >. ) D ( 2nd `  <. u ,  v >. )
) } ,  RR* ,  <  )  =  sup ( { ( A C u ) ,  ( B D v ) } ,  RR* ,  <  ) )
7065, 69eqtrd 2172 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  =  sup ( { ( A C u ) ,  ( B D v ) } ,  RR* ,  <  ) )
7170breq1d 3939 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  <->  sup ( { ( A C u ) ,  ( B D v ) } ,  RR* ,  <  )  <  w ) )
72 xmetcl 12521 . . . . . . . . . . . 12  |-  ( ( C  e.  ( *Met `  X )  /\  A  e.  X  /\  u  e.  X
)  ->  ( A C u )  e. 
RR* )
7334, 28, 31, 72syl3anc 1216 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( A C u )  e. 
RR* )
74 xmetcl 12521 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  Y )  /\  B  e.  Y  /\  v  e.  Y
)  ->  ( B D v )  e. 
RR* )
7544, 29, 32, 74syl3anc 1216 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( B D v )  e. 
RR* )
76 rpxr 9449 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  w  e. 
RR* )
7776ad3antlr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  w  e.  RR* )
78 xrmaxltsup 11027 . . . . . . . . . . 11  |-  ( ( ( A C u )  e.  RR*  /\  ( B D v )  e. 
RR*  /\  w  e.  RR* )  ->  ( sup ( { ( A C u ) ,  ( B D v ) } ,  RR* ,  <  )  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
7973, 75, 77, 78syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  ( sup ( { ( A C u ) ,  ( B D v ) } ,  RR* ,  <  )  <  w  <->  ( ( A C u )  <  w  /\  ( B D v )  <  w ) ) )
8071, 79bitrd 187 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
81 df-ov 5777 . . . . . . . . . . . . 13  |-  ( A F B )  =  ( F `  <. A ,  B >. )
82 df-ov 5777 . . . . . . . . . . . . 13  |-  ( u F v )  =  ( F `  <. u ,  v >. )
8381, 82oveq12i 5786 . . . . . . . . . . . 12  |-  ( ( A F B ) E ( u F v ) )  =  ( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )
8483breq1i 3936 . . . . . . . . . . 11  |-  ( ( ( A F B ) E ( u F v ) )  <  z  <->  ( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >. )
)  <  z )
8584bicomi 131 . . . . . . . . . 10  |-  ( ( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z  <->  ( ( A F B ) E ( u F v ) )  <  z )
8685a1i 9 . . . . . . . . 9  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z  <->  ( ( A F B ) E ( u F v ) )  <  z ) )
8780, 86imbi12d 233 . . . . . . . 8  |-  ( ( ( ( ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  /\  v  e.  Y )  ->  (
( ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z
)  <->  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
8887ralbidva 2433 . . . . . . 7  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  z  e.  RR+ )  /\  w  e.  RR+ )  /\  u  e.  X )  ->  ( A. v  e.  Y  ( ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z
)  <->  A. v  e.  Y  ( ( ( A C u )  < 
w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
8988ralbidva 2433 . . . . . 6  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  z  e.  RR+ )  /\  w  e.  RR+ )  ->  ( A. u  e.  X  A. v  e.  Y  ( ( <. A ,  B >. ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) <. u ,  v
>. )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  <. u ,  v >.
) )  <  z
)  <->  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  < 
w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
9027, 89syl5bb 191 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  z  e.  RR+ )  /\  w  e.  RR+ )  ->  ( A. t  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) C ( 1st `  s ) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z )  <->  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  < 
w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
9190rexbidva 2434 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) )  /\  ( A  e.  X  /\  B  e.  Y
) )  /\  z  e.  RR+ )  ->  ( E. w  e.  RR+  A. t  e.  ( X  X.  Y
) ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z )  <->  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
9291ralbidva 2433 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( A. z  e.  RR+  E. w  e.  RR+  A. t  e.  ( X  X.  Y
) ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z )  <->  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
9392anbi2d 459 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. t  e.  ( X  X.  Y
) ( ( <. A ,  B >. ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  r ) C ( 1st `  s
) ) ,  ( ( 2nd `  r
) D ( 2nd `  s ) ) } ,  RR* ,  <  )
) t )  < 
w  ->  ( ( F `  <. A ,  B >. ) E ( F `  t ) )  <  z ) )  <->  ( F :
( X  X.  Y
) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) ) )
9414, 20, 933bitr3d 217 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  E  e.  ( *Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {cpr 3528   <.cop 3530   class class class wbr 3929    X. cxp 4537   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037   supcsup 6869   RR*cxr 7799    < clt 7800   RR+crp 9441   *Metcxmet 12149   MetOpencmopn 12154    CnP ccnp 12355    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cnp 12358  df-tx 12422
This theorem is referenced by:  txmetcn  12688  limccnp2cntop  12815
  Copyright terms: Public domain W3C validator